11,770 research outputs found

    Three-dimensional measurements with a novel technique combination of confocal and focus variation with a simultaneous scan

    Get PDF
    The most common optical measurement technologies used today for the three dimensional measurement of technical surfaces are Coherence Scanning Interferometry (CSI), Imaging Confocal Microscopy (IC), and Focus Variation (FV). Each one has its benefits and its drawbacks. FV will be the ideal technology for the measurement of those regions where the slopes are high and where the surface is very rough, while CSI and IC will provide better results for smoother and flatter surface regions. In this work we investigated the benefits and drawbacks of combining Interferometry, Confocal and focus variation to get better measurement of technical surfaces. We investigated a way of using Microdisplay Scanning type of Confocal Microscope to acquire on a simultaneous scan confocal and focus Variation information to reconstruct a three dimensional measurement. Several methods are presented to fuse the optical sectioning properties of both techniques as well as the topographical information. This work shows the benefit of this combination technique on several industrial samples where neither confocal nor focus variation is able to provide optimal results.Postprint (author's final draft

    Light-sheet microscopy: a tutorial

    Get PDF
    This paper is intended to give a comprehensive review of light-sheet (LS) microscopy from an optics perspective. As such, emphasis is placed on the advantages that LS microscope configurations present, given the degree of freedom gained by uncoupling the excitation and detection arms. The new imaging properties are first highlighted in terms of optical parameters and how these have enabled several biomedical applications. Then, the basics are presented for understanding how a LS microscope works. This is followed by a presentation of a tutorial for LS microscope designs, each working at different resolutions and for different applications. Then, based on a numerical Fourier analysis and given the multiple possibilities for generating the LS in the microscope (using Gaussian, Bessel, and Airy beams in the linear and nonlinear regimes), a systematic comparison of their optical performance is presented. Finally, based on advances in optics and photonics, the novel optical implementations possible in a LS microscope are highlighted.Peer ReviewedPostprint (published version

    Three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT).

    Get PDF
    Optical methods capable of manipulating neural activity with cellular resolution and millisecond precision in three dimensions will accelerate the pace of neuroscience research. Existing approaches for targeting individual neurons, however, fall short of these requirements. Here we present a new multiphoton photo-excitation method, termed three-dimensional scanless holographic optogenetics with temporal focusing (3D-SHOT), which allows precise, simultaneous photo-activation of arbitrary sets of neurons anywhere within the addressable volume of a microscope. This technique uses point-cloud holography to place multiple copies of a temporally focused disc matching the dimensions of a neurons cell body. Experiments in cultured cells, brain slices, and in living mice demonstrate single-neuron spatial resolution even when optically targeting randomly distributed groups of neurons in 3D. This approach opens new avenues for mapping and manipulating neural circuits, allowing a real-time, cellular resolution interface to the brain

    In situ correction of liquid meniscus in cell culture imaging system based on parallel Fourier ptychographic microscopy (96 Eyes)

    Get PDF
    We collaborated with Amgen and spent five years in designing and fabricating next generation multi-well plate imagers based on Fourier ptychographic microscopy (FPM). A 6-well imager (Emsight) and a low-cost parallel microscopic system (96 Eyes) based on parallel FPM were reported in our previous work. However, the effect of liquid meniscus on the image quality is much stronger than anticipated, introducing obvious wavevector misalignment and additional image aberration. To this end, an adaptive wavevector correction (AWC-FPM) algorithm and a pupil recovery improvement strategy are presented to solve these challenges in situ. In addition, dual-channel fluorescence excitation is added to obtain structural information for microbiologists. Experiments are demonstrated to verify their performances. The accuracy of angular resolution with our algorithm is within 0.003 rad. Our algorithms would make the FPM algorithm more robust and practical and can be extended to other FPM-based applications to overcome similar challenges

    Technologies for imaging neural activity in large volumes

    Get PDF
    Neural circuitry has evolved to form distributed networks that act dynamically across large volumes. Collecting data from individual planes, conventional microscopy cannot sample circuitry across large volumes at the temporal resolution relevant to neural circuit function and behaviors. Here, we review emerging technologies for rapid volume imaging of neural circuitry. We focus on two critical challenges: the inertia of optical systems, which limits image speed, and aberrations, which restrict the image volume. Optical sampling time must be long enough to ensure high-fidelity measurements, but optimized sampling strategies and point spread function engineering can facilitate rapid volume imaging of neural activity within this constraint. We also discuss new computational strategies for the processing and analysis of volume imaging data of increasing size and complexity. Together, optical and computational advances are providing a broader view of neural circuit dynamics, and help elucidate how brain regions work in concert to support behavior

    Non-common Path Aberration Correction in an Adaptive Optics Scanning Ophthalmoscope

    Get PDF
    The correction of non-common path aberrations (NCPAs) between the imaging and wavefront sensing channel in a confocal scanning adaptive optics ophthalmoscope is demonstrated. NCPA correction is achieved by maximizing an image sharpness metric while the confocal detection aperture is temporarily removed, effectively minimizing the monochromatic aberrations in the illumination path of the imaging channel. Comparison of NCPA estimated using zonal and modal orthogonal wavefront corrector bases provided wavefronts that differ by ~λ/20 in root-mean-squared (~λ/30 standard deviation). Sequential insertion of a cylindrical lens in the illumination and light collection paths of the imaging channel was used to compare image resolution after changing the wavefront correction to maximize image sharpness and intensity metrics. Finally, the NCPA correction was incorporated into the closed-loop adaptive optics control by biasing the wavefront sensor signals without reducing its bandwidth
    • …
    corecore