12,746 research outputs found

    A week-end off: the first extensive number-theoretical computation on the ENIAC

    Get PDF
    The first extensive number-theoretical computation run on the ENIAC, is reconstructed. The problem, computing the exponent of 2 modulo a prime, was set up on the ENIAC during a week-end in July 1946 by the number-theorist D.H. Lehmer, with help from his wife Emma and John Mauchly. Important aspects of the ENIAC's design are presented-and the reconstruction of the implementation of the problem on the ENIAC is discussed in its salient points

    New Combinatorial Construction Techniques for Low-Density Parity-Check Codes and Systematic Repeat-Accumulate Codes

    Full text link
    This paper presents several new construction techniques for low-density parity-check (LDPC) and systematic repeat-accumulate (RA) codes. Based on specific classes of combinatorial designs, the improved code design focuses on high-rate structured codes with constant column weights 3 and higher. The proposed codes are efficiently encodable and exhibit good structural properties. Experimental results on decoding performance with the sum-product algorithm show that the novel codes offer substantial practical application potential, for instance, in high-speed applications in magnetic recording and optical communications channels.Comment: 10 pages; to appear in "IEEE Transactions on Communications

    Setting-up early computer programs: D. H. Lehmer's ENIAC computation

    Get PDF
    A complete reconstruction of Lehmer's ENIAC set-up for computing the exponents of p modulo two is given. This program served as an early test program for the ENIAC (1946). The reconstruction illustrates the difficulties of early programmers to find a way between a man operated and a machine operated computation. These difficulties concern both the content level (the algorithm) and the formal level (the logic of sequencing operations)

    Decoding: Codes and hardware implementation

    Get PDF
    The MST radars vary considerably from one installation to the next in the type of hardware, operating schedule and associated personnel. Most such systems do not have the computing power to decode in software when the decoding must be performed for each received pulse, as is required for certain sets of phase codes. These sets provide the best signal to sidelobe ratio when operating at the minimum band length allowed by the bandwidth of the transmitter. The development of the hardware phase decoder, and the applicability of each to decoding MST radar signals are discussed. A new design for a decoder which is very inexpensive to build, easy to add to an existing system and is capable of decoding on each received pulse using codes with a band length as short as one microsecond is presented

    MULTIPAC, a multiple pool processor and computer for a spacecraft central data system, phase 2 Final report

    Get PDF
    MULTIPAC, multiple pool processor and computer for deep space probe central data syste

    A simplified, general-purpose deep-space ranging correlator design

    Get PDF
    A much-simplified, yet more general-purpose multi-channel deep-space ranging system correlator design that was used in past JPL spacecraft ranging systems is described. The method applies to detection of both single-component and multiple-component ranging codes, in either sequential (mu) or composite (pi) transmitted forms, and using either pseudonoise or square-wave components. Using this design, the Phobos Probe ranging system correlator computational complexity was reduced by over three orders of magnitude in multiply-and-add circuits and 45,000 bits of accumulator storage
    • …
    corecore