83,292 research outputs found

    A web-based learning environment exploiting 3D virtual worlds

    Get PDF
    There is no doubt that during the last few years the learning process has been greatly affected by the rapidly evolving era of information and technological development. The continuously increasing pace in computer power advancement in conjunction with new Internet technologies have led to the extensive usage of multimedia and 3D graphics, resulting to new forms of visualization, distribution and presentation of training material. The objectives of this work are to present an integrated view of interactive 3D virtual worlds used in the implementation of learning activities through the web and to analyze and design an e-learning system based on the exploitation of multimedia technologies, the Internet and 3D virtual worlds. The proposed system provides learners with an interactive 3D virtual learning environment thus enabling them to participate virtually in studying and performing simulated lab experiments for a course in Computer Graphics. Some of the aforementioned system’s highlights include the increased management and security capabilities of the virtual environment along with additional features offering simulation of various laboratory exercises

    CyberGuarder: a virtualization security assurance architecture for green cloud computing

    Get PDF
    Cloud Computing, Green Computing, Virtualization, Virtual Security Appliance, Security Isolation

    Seamless and Secure VR: Adapting and Evaluating Established Authentication Systems for Virtual Reality

    Get PDF
    Virtual reality (VR) headsets are enabling a wide range of new opportunities for the user. For example, in the near future users may be able to visit virtual shopping malls and virtually join international conferences. These and many other scenarios pose new questions with regards to privacy and security, in particular authentication of users within the virtual environment. As a first step towards seamless VR authentication, this paper investigates the direct transfer of well-established concepts (PIN, Android unlock patterns) into VR. In a pilot study (N = 5) and a lab study (N = 25), we adapted existing mechanisms and evaluated their usability and security for VR. The results indicate that both PINs and patterns are well suited for authentication in VR. We found that the usability of both methods matched the performance known from the physical world. In addition, the private visual channel makes authentication harder to observe, indicating that authentication in VR using traditional concepts already achieves a good balance in the trade-off between usability and security. The paper contributes to a better understanding of authentication within VR environments, by providing the first investigation of established authentication methods within VR, and presents the base layer for the design of future authentication schemes, which are used in VR environments only

    Acoustic Integrity Codes: Secure Device Pairing Using Short-Range Acoustic Communication

    Full text link
    Secure Device Pairing (SDP) relies on an out-of-band channel to authenticate devices. This requires a common hardware interface, which limits the use of existing SDP systems. We propose to use short-range acoustic communication for the initial pairing. Audio hardware is commonly available on existing off-the-shelf devices and can be accessed from user space without requiring firmware or hardware modifications. We improve upon previous approaches by designing Acoustic Integrity Codes (AICs): a modulation scheme that provides message authentication on the acoustic physical layer. We analyze their security and demonstrate that we can defend against signal cancellation attacks by designing signals with low autocorrelation. Our system can detect overshadowing attacks using a ternary decision function with a threshold. In our evaluation of this SDP scheme's security and robustness, we achieve a bit error ratio below 0.1% for a net bit rate of 100 bps with a signal-to-noise ratio (SNR) of 14 dB. Using our open-source proof-of-concept implementation on Android smartphones, we demonstrate pairing between different smartphone models.Comment: 11 pages, 11 figures. Published at ACM WiSec 2020 (13th ACM Conference on Security and Privacy in Wireless and Mobile Networks). Updated reference

    To enhance collaborative learning and practice network knowledge with a virtualization laboratory and online synchronous discussion

    Get PDF
    This work is licensed under a Creative Commons Attribution 4.0 Internatinal License.Recently, various computer networking courses have included additional laboratory classes in order to enhance students' learning achievement. However, these classes need to establish a suitable laboratory where each student can connect network devices to configure and test functions within different network topologies. In this case, the Linux operating system can be used to operate network devices and the virtualization technique can include multiple OSs for supporting a significant number of students. In previous research, the virtualization application was successfully applied in a laboratory, but focused only on individual assignments. The present study extends previous research by designing the Networking Virtualization-Based Laboratory (NVBLab), which requires collaborative learning among the experimental students. The students were divided into an experimental group and a control group for the experiment. The experimental group performed their laboratory assignments using NVBLab, whereas the control group completed them on virtual machines (VMs) that were installed on their personal computers. Moreover, students using NVBLab were provided with an online synchronous discussion (OSD) feature that enabled them to communicate with others. The laboratory assignments were divided into two parts: Basic Labs and Advanced Labs. The results show that the experimental group significantly outperformed the control group in two Advanced Labs and the post-test after Advanced Labs. Furthermore, the experimental group's activities were better than those of the control group based on the total average of the command count per laboratory. Finally, the findings of the interviews and questionnaires with the experimental group reveal that NVBLab was helpful during and after laboratory class

    Towards distributed architecture for collaborative cloud services in community networks

    Get PDF
    Internet and communication technologies have lowered the costs for communities to collaborate, leading to new services like user-generated content and social computing, and through collaboration, collectively built infrastructures like community networks have also emerged. Community networks get formed when individuals and local organisations from a geographic area team up to create and run a community-owned IP network to satisfy the community’s demand for ICT, such as facilitating Internet access and providing services of local interest. The consolidation of today’s cloud technologies offers now the possibility of collectively built community clouds, building upon user-generated content and user-provided networks towards an ecosystem of cloud services. To address the limitation and enhance utility of community networks, we propose a collaborative distributed architecture for building a community cloud system that employs resources contributed by the members of the community network for provisioning infrastructure and software services. Such architecture needs to be tailored to the specific social, economic and technical characteristics of the community networks for community clouds to be successful and sustainable. By real deployments of clouds in community networks and evaluation of application performance, we show that community clouds are feasible. Our result may encourage collaborative innovative cloud-based services made possible with the resources of a community.Peer ReviewedPostprint (author’s final draft

    The cyber security learning and research environment

    Get PDF
    This report outlines the design and configuration of the Cyber Security Learning and Research Environment (CLARE). It explains how such a system can be implemented with minimal hardware either on a single machine or across multiple machines. Moreover, details of the design of the components that constitute the environment are provided alongside sufficient implementation and configuration documentation to allow for replication of the environment

    AADLib, A Library of Reusable AADL Models

    Get PDF
    The SAE Architecture Analysis and Design Language is now a well-established language for the description of critical embedded systems, but also cyber-physical ones. A wide range of analysis tools is already available, either as part of the OSATE tool chain, or separate ones. A key missing elements of AADL is a set of reusable building blocks to help learning AADL concepts, but also experiment already existing tool chains on validated real-life examples. In this paper, we present AADLib, a library of reusable model elements. AADLib is build on two pillars: 1/ a set of ready-to- use examples so that practitioners can learn more about the AADL language itself, but also experiment with existing tools. Each example comes with a full description of available analysis and expected results. This helps reducing the learning curve of the language. 2/ a set of reusable model elements that cover typical building blocks of critical systems: processors, networks, devices with a high level of fidelity so that the cost to start a new project is reduced. AADLib is distributed under a Free/Open Source License to further disseminate the AADL language. As such, AADLib provides a convenient way to discover AADL concepts and tool chains, and learn about its features
    • …
    corecore