718 research outputs found

    Development of Arm Exo-skeleton for Bicep Brachii Muscle

    Get PDF
    This report presents the study on design of arm exoskeleton for stroke rehabilitation purpose. The mechanical design of the exoskeleton focuses on few aspects of the arm exoskeleton which are length and the design of the exoskeleton and motor specification. Besides, the experiment of obtaining surface electromyography (sEMG) signal for repetition training for physiotherapy patient purpose is carried out to observe the difference in amplitude and muscle signal of different subjects (four males and four females) due to the amount of training and the angle of the training. The signals are filtered and the average of the root mean square of the data is compared

    Surface Electromyography (EMG) Signal Acquisition

    Get PDF
    The aim of this project is to develop technology to acquire signal from the surface electromyography based on the muscle activity. SEMG, the Surface Electromyography, is a non-invasive technique aimed at detecting and/or inferring EMG signal acquired from surface of the skin underlying the human muscle. In this research, the signal is analyzed using MATLAB was created to study on the EMG signal acquired

    Effects of different vibration frequencies, amplitudes and contraction levels on lower limb muscles during graded isometric contractions superimposed on whole body vibration stimulation

    Get PDF
    Background: Indirect vibration stimulation, i.e., whole body vibration or upper limb vibration, has been investigated increasingly as an exercise intervention for rehabilitation applications. However, there is a lack of evidence regarding the effects of graded isometric contractions superimposed on whole body vibration stimulation. Hence, the objective of this study was to quantify and analyse the effects of variations in the vibration parameters and contraction levels on the neuromuscular responses to isometric exercise superimposed on whole body vibration stimulation. Methods: In this study, we assessed the 'neuromuscular effects' of graded isometric contractions, of 20%, 40%, 60%, 80% and 100% of maximum voluntary contraction, superimposed on whole body vibration stimulation (V) and control (C), i.e., no-vibration in 12 healthy volunteers. Vibration stimuli tested were 30 Hz and 50 Hz frequencies and 0.5 mm and 1.5 mm amplitude. Surface electromyographic activity of the vastus lateralis, vastus medialis and biceps femoris were measured during V and C conditions with electromyographic root mean square and electromyographic mean frequency values used to quantify muscle activity and their fatigue levels, respectively. Results: Both the prime mover (vastus lateralis) and the antagonist (biceps femoris) displayed significantly higher (P < 0.05) electromyographic activity with the V than the C condition with varying percentage increases in EMG root-mean-square (EMGrms) values ranging from 20% to 200%. For both the vastus lateralis and biceps femoris, the increase in mean EMGrms values depended on the frequency, amplitude and muscle contraction level with 50 Hz-0.5 mm stimulation inducing the largest neuromuscular activity. Conclusions: These results show that the isometric contraction superimposed on vibration stimulation leads to higher neuromuscular activity compared to isometric contraction alone in the lower limbs. The combination of the vibration frequency with the amplitude and the muscle tension together grades the final neuromuscular output.Peer reviewe

    Design and Implementation of Prosthetic Hand Control Using Myoelectric Signal

    Get PDF
    Amputation is a medical procedure that is required to cut part of or all of the extremity, i.e. upper limbs or lower limbs. In the final phase of the procedure, patients have to adapt to their new condition including the use of prostheses. Nowadays, Prosthetic hand have had a lot of improvements that enable patients to do normal activities by exploiting their myoelectric signal. This study has a goal to produce prosthetic hand that can respond to patient generating myoelectric signal. Three muscle leads (2 on  muscle flexor digitorum, 1 on muscle extensor digitorum) were processed by 3 channels surface electromyography (sEMG) that contain of instrument amplifier i.e. high-pass filter, rectifier, and notch filter. Myoelectric signal is processed to extraction feature and classified by artificial neural network (ANN) that had been offline-trained before and had 21 neurons input layer, 10 neurons hidden layer, and 3 neurons output layer to detect 3 hand movements, i.e. grasping, pinch, and open grasp. ANN and prosthetic hand control was embedded on Arduino Due microcontroller so that the system could be used in stand-alone and real time mode. The results of the testing from 4 research subjects shown that the hand prostheses system had success rate of 87% – 91%

    AN INVESTIGATION OF ELECTROMYOGRAPHIC (EMG) CONTROL OF DEXTROUS HAND PROSTHESES FOR TRANSRADIAL AMPUTEES

    Get PDF
    In reference to IEEE copyrighted material which is used with permission in this thesis, the IEEE does not endorse any of Plymouth University's products or services.There are many amputees around the world who have lost a limb through conflict, disease or an accident. Upper-limb prostheses controlled using surface Electromyography (sEMG) offer a solution to help the amputees; however, their functionality is limited by the small number of movements they can perform and their slow reaction times. Pattern recognition (PR)-based EMG control has been proposed to improve the functional performance of prostheses. It is a very promising approach, offering intuitive control, fast reaction times and the ability to control a large number of degrees of freedom (DOF). However, prostheses controlled with PR systems are not available for everyday use by amputees, because there are many major challenges and practical problems that need to be addressed before clinical implementation is possible. These include lack of individual finger control, an impractically large number of EMG electrodes, and the lack of deployment protocols for EMG electrodes site selection and movement optimisation. Moreover, the inability of PR systems to handle multiple forces is a further practical problem that needs to be addressed. The main aim of this project is to investigate the research challenges mentioned above via non-invasive EMG signal acquisition, and to propose practical solutions to help amputees. In a series of experiments, the PR systems presented here were tested with EMG signals acquired from seven transradial amputees, which is unique to this project. Previous studies have been conducted using non-amputees. In this work, the challenges described are addressed and a new protocol is proposed that delivers a fast clinical deployment of multi-functional upper limb prostheses controlled by PR systems. Controlling finger movement is a step towards the restoration of lost human capabilities, and is psychologically important, as well as physically. A central thread running through this work is the assertion that no two amputees are the same, each suffering different injuries and retaining differing nerve and muscle structures. This work is very much about individualised healthcare, and aims to provide the best possible solution for each affected individual on a case-by-case basis. Therefore, the approach has been to optimise the solution (in terms of function and reliability) for each individual, as opposed to developing a generic solution, where performance is optimised against a test population. This work is unique, in that it contributes to improving the quality of life for each individual amputee by optimising function and reliability. The main four contributions of the thesis are as follows: 1- Individual finger control was achieved with high accuracy for a large number of finger movements, using six optimally placed sEMG channels. This was validated on EMG signals for ten non-amputee and six amputee subjects. Thumb movements were classified successfully with high accuracy for the first time. The outcome of this investigation will help to add more movements to the prosthesis, and reduce hardware and computational complexity. 2- A new subject-specific protocol for sEMG site selection and reliable movement subset optimisation, based on the amputee’s needs, has been proposed and validated on seven amputees. This protocol will help clinicians to perform an efficient and fast deployment of prostheses, by finding the optimal number and locations of EMG channels. It will also find a reliable subset of movements that can be achieved with high performance. 3- The relationship between the force of contraction and the statistics of EMG signals has been investigated, utilising an experimental design where visual feedback from a Myoelectric Control Interface (MCI) helped the participants to produce the correct level of force. Kurtosis values were found to decrease monotonically when the contraction level increased, thus indicating that kurtosis can be used to distinguish different forces of contractions. 4- The real practical problem of the degradation of classification performance as a result of the variation of force levels during daily use of the prosthesis has been investigated, and solved by proposing a training approach and the use of a robust feature extraction method, based on the spectrum. The recommendations of this investigation improve the practical robustness of prostheses controlled with PR systems and progress a step further towards clinical implementation and improving the quality of life of amputees. The project showed that PR systems achieved a reliable performance for a large number of amputees, taking into account real life issues such as individual finger control for high dexterity, the effect of force level variation, and optimisation of the movements and EMG channels for each individual amputee. The findings of this thesis showed that the PR systems need to be appropriately tuned before usage, such as training with multiple forces to help to reduce the effect of force variation, aiming to improve practical robustness, and also finding the optimal EMG channel for each amputee, to improve the PR system’s performance. The outcome of this research enables the implementation of PR systems in real prostheses that can be used by amputees.Ministry of Higher Education and Scientific Research and Baghdad University- Baghdad/Ira

    Ultrasonography as Biofeedback to Increase Muscle Activation During the Mendelsohn Maneuver in Healthy Adults

    Get PDF
    The purpose of this study was to examine the effect of applying real-time ultrasound as visual feedback in addition to verbal instruction/tactile feedback to facility the accuracy of learning the Mendelsohn maneuver. The Mendelsohn maneuver is one of the commonly used swallowing exercises targeting hyolaryngeal elevation and prolonging upper esophageal sphincter opening during swallow. It was hypothesized that the additional visual cueing provided by ultrasound would significantly increase sEMG activity which may be associated with increased duration and extent of hyolaryngeal elevation during the Mendelsohn maneuver as compared to the effect of verbal instruction/tactile feedback alone. A total of twenty-four healthy adults aged between 20 and 59 years were randomly assigned into training with ultrasound biofeedback versus training with verbal instruction/tactile cueing groups. Outcomes were measured via sEMG before and after training. Statistical analysis of the data with three-way repeated measures ANOVA revealed both ultrasound feedback and traditional cueing were effective for teaching the Mendelsohn maneuver. However, there were no significant differences between the two groups in maximum amplitude of sEMG, sEMG duration, and the area under the curve of sEMG signal when performing swallows with the Mendelsohn maneuver. Although the findings do not demonstrate that the addition of ultrasound biofeedback in training will significantly increase the electromyographic outcomes when performing the Mendelsohn maneuverer, it is still an effective and feasible tool for learning a new swallowing maneuver

    Applications of the electric potential sensor for healthcare and assistive technologies

    Get PDF
    The work discussed in this thesis explores the possibility of employing the Electric Potential Sensor for use in healthcare and assistive technology applications with the same and in some cases better degrees of accuracy than those of conventional technologies. The Electric Potential Sensor is a generic and versatile sensing technology capable of working in both contact and non-contact (remote) modes. New versions of the active sensor were developed for specific surface electrophysiological signal measurements. The requirements in terms of frequency range, electrode size and gain varied with the type of signal measured for each application. Real-time applications based on electrooculography, electroretinography and electromyography are discussed, as well as an application based on human movement. A three sensor electrooculography eye tracking system was developed which is of interest to eye controlled assistive technologies. The system described achieved an accuracy at least as good as conventional wet gel electrodes for both horizontal and vertical eye movements. Surface recording of the electroretinogram, used to monitor eye health and diagnose degenerative diseases of the retina, was achieved and correlated with both corneal fibre and wet gel surface electrodes. The main signal components of electromyography lie in a higher bandwidth and surface signals of the deltoid muscle were recorded over the course of rehabilitation of a subject with an injured arm. Surface electromyography signals of the bicep were also recorded and correlated with the joint dynamics of the elbow. A related non-contact application of interest to assistive technologies was also developed. Hand movement within a defined area was mapped and used to control a mouse cursor and a predictive text interface

    Effects of EMG-controlled video games on the upper limb functionality in patients with multiple sclerosis: a feasibility study and development description

    Get PDF
    Multiple sclerosis (MS) is the most common inflammatory neurological disease in young adults, with a high prevalence worldwide (2.8 million people). To aid in the MS treatment, using VR tools in cognitive and motor rehabilitation of such disease has been growing progressively in the last years. However, the role of VR as a rehabilitative tool in MS treatment is still under debate. This paper explores the effects of VR training using EMG activation in upper limb functionality. An experimental training protocol using video games controlled using an MYO armband sensor was conducted in a sample of patients with MS. Results support the use of EMG-commanded video games as a rehabilitative tool in patients with MS, obtaining favorable outcomes related to upper limb functionality and satisfaction.The authors would like to thank all the participants who collaborated in this study, as well as the staff of Association ALEM (Leganés, Spain). Also, the authors would like to thank Hugo Alonso Cámara for his collaboration and technical support. The research leading to these results received funding from the Spanish Ministry of Economy and Competitiveness as part of the project "ROBOASSET: Intelligent Robotic Systems for Assessment and Rehabilitation in Upper Limb Therapies" (PID2020-113508RB-I00), funded by AEI/10.13039/501100011033; from the Robocity2030-III-CM Project (S2013/MIT-2748) which is supported in part by Programas de Actividades I+D en la Comunidad de Madrid and in part by Structural Funds of the EU; and also from Spanish research project Discover2Walk "Sistema Robótico para Propiciar la Marcha en Niños Pequeños con Parálisis Cerebral" under Grant PID2019-105110RB-C32/AEI/10.13039/501100011033. This paper was part of the R&D and the authors' project PLEC2021-007819 funded by MCIN/AEI/10.13039/501100011033 and by the European Union NextGenerationEU/PRTR

    Fall Prediction and Prevention Systems: Recent Trends, Challenges, and Future Research Directions.

    Get PDF
    Fall prediction is a multifaceted problem that involves complex interactions between physiological, behavioral, and environmental factors. Existing fall detection and prediction systems mainly focus on physiological factors such as gait, vision, and cognition, and do not address the multifactorial nature of falls. In addition, these systems lack efficient user interfaces and feedback for preventing future falls. Recent advances in internet of things (IoT) and mobile technologies offer ample opportunities for integrating contextual information about patient behavior and environment along with physiological health data for predicting falls. This article reviews the state-of-the-art in fall detection and prediction systems. It also describes the challenges, limitations, and future directions in the design and implementation of effective fall prediction and prevention systems

    Deep Learning Based Abnormal Gait Classification System Study with Heterogeneous Sensor Network

    Get PDF
    Gait is one of the important biological characteristics of the human body. Abnormal gait is mostly related to the lesion site and has been demonstrated to play a guiding role in clinical research such as medical diagnosis and disease prevention. In order to promote the research of automatic gait pattern recognition, this paper introduces the research status of abnormal gait recognition and systems analysis of the common gait recognition technologies. Based on this, two gait information extraction methods, sensor-based and vision-based, are studied, including wearable system design and deep neural network-based algorithm design. In the sensor-based study, we proposed a lower limb data acquisition system. The experiment was designed to collect acceleration signals and sEMG signals under normal and pathological gaits. Specifically, wearable hardware-based on MSP430 and upper computer software based on Labview is designed. The hardware system consists of EMG foot ring, high-precision IMU and pressure-sensitive intelligent insole. Data of 15 healthy persons and 15 hemiplegic patients during walking were collected. The classification of gait was carried out based on sEMG and the average accuracy rate can reach 92.8% for CNN. For IMU signals five kinds of abnormal gait are trained based on three models: BPNN, LSTM, and CNN. The experimental results show that the system combined with the neural network can classify different pathological gaits well, and the average accuracy rate of the six-classifications task can reach 93%. In vision-based research, by using human keypoint detection technology, we obtain the precise location of the key points through the fusion of thermal mapping and offset, thus extracts the space-time information of the key points. However, the results show that even the state-of-the-art is not good enough for replacing IMU in gait analysis and classification. The good news is the rhythm wave can be observed within 2 m, which proves that the temporal and spatial information of the key points extracted is highly correlated with the acceleration information collected by IMU, which paved the way for the visual-based abnormal gait classification algorithm.步态指人走路时表现出来的姿态,是人体重要生物特征之一。异常步态多与病变部位有关,作为反映人体健康状况和行为能力的重要特征,其被论证在医疗诊断、疾病预防等临床研究中具有指导作用。为了促进步态模式自动识别的研究,本文介绍了异常步态识别的研究现状,系统地分析了常见步态识别技术以及算法,以此为基础研究了基于传感器与基于视觉两种步态信息提取方法,内容包括可穿戴系统设计与基于深度神经网络的算法设计。 在基于传感器的研究中,本工作开发了下肢步态信息采集系统,并利用该信息采集系统设计实验,采集正常与不同病理步态下的加速度信号与肌电信号,搭建深度神经网络完成分类任务。具体的,在系统搭建部分设计了基于MSP430的可穿戴硬件设备以及基于Labview的上位机软件,该硬件系统由肌电脚环,高精度IMU以及压感智能鞋垫组成,该上位机软件接收、解包蓝牙数据并计算出步频步长等常用步态参数。 在基于运动信号与基于表面肌电的研究中,采集了15名健康人与15名偏瘫病人的步态数据,并针对表面肌电信号训练卷积神经网络进行帕金森步态的识别与分类,平均准确率可达92.8%。针对运动信号训练了反向传播神经网络,LSTM以及卷积神经网络三种模型进行五种异常步态的分类任务。实验结果表明,本工作中步态信息采集系统结合神经网络模型,可以很好地对不同病理步态进行分类,六分类平均正确率可达93%。 在基于视觉的研究中,本文利用人体关键点检测技术,首先检测出图片中的一个或多个人,接着对边界框做图像分割,接着采用全卷积resnet对每一个边界框中的人物的主要关节点做热力图并分析偏移量,最后通过热力图与偏移的融合得到关键点的精确定位。通过该算法提取了不同步态下姿态关键点时空信息,为基于视觉的步态分析系统提供了基础条件。但实验结果表明目前最高准确率的人体关键点检测算法不足以替代IMU实现步态分析与分类。但在2m之内可以观察到节律信息,证明了所提取的关键点时空信息与IMU采集的加速度信息呈现较高相关度,为基于视觉的异常步态分类算法铺平了道路
    corecore