3 research outputs found

    Potential merits for space robotics from novel concepts of actuation for soft robotics

    Get PDF
    Autonomous robots in dynamic and unstructured environments require high performance, energy efficient and reliable actuators. In this paper we give an overview of the first results of two lines of research regarding the novel actuation principle we introduced: Series-Parallel Elastic Actuation (SPEA). Firstly, we introduce the SPEA concept and present first prototypes and results. Secondly, we discuss the potential of self-healing materials in robotics, and discuss the results on the first self-healing pneumatic cell and selfhealing mechanical fuse. Both concepts have the potential to improve performance, energy efficiency and reliability

    Bi-directional series-parallel elastic actuator and overlap of the actuation layers

    Get PDF
    Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator

    Development and Optimisation of 3D Printed Compliant Joint Mechanisms for Hypermobile Robots

    Get PDF
    Hypermobile robots are an area of robotics that are often used as exploratory robots, but have facets that feature in other areas of the field. Hypermobile robots are robots that feature multiple body segments or modules, with joints between each. These robots are often used for exploratory purposes due to being able to maintain contact with the ground due to their flexible bodies. Wormbot was a hypermobile robot developed at the University of Leeds, which used a locomotion gait based on that of a Caenorhabditis elegans nematode worm, otherwise known as C.elegans. This movement pattern is reliant on compliance; a mechanism where the joints are slightly sprung and comply to the environment. The next iteration of Wormbot needs to be reduced in size, which would also require a new actuation and compliance system. This thesis describes the process of investigating a method of compliance to be used in the next version of Wormbot, while utilising the multi-material 3D printing capabilities available at the University. 3D printing provides quick manufacturing, allowing for fast changes to made to prototype components if required. During the process of this research, two 3D printed compliant actuation systems were produced; a pneumatic bellow and a Series Elastic Element (SEE) to be used in tandem with a servo motor. Both methods were tested to analyse their performance. The bellow was produced to utilise the capabilities of multi-material printing to strengthening suspected weak areas of the actuator. However, the performance of the bellow was unsatisfactory, failing twice in two actuation tests tests due to the device breaking. The SEE on the other hand, designed with two stiffer plates and a rubber-like spring element in the middle, initially proved to be reliable and repeatable in performance, with potential to behave linearly to a set spring constant. These results were acquired by performing rotational step response tests and fitting a spring-damper model to the results. However, issues with the plastic material were discovered when it was found to deform much more than anticipated, behaving in a similar manner to an additional spring element, complicating the model. Simulation work to explore the potential for using different spring constants of joint compliance in varying environments was also explored. This involved testing a virtual Wormbot in a range of environments while altering joint compliance. These simulations revealed that softer joints allow for favourable performance in constricting environments, while stiffer joints lend themselves more to quicker movement
    corecore