237,939 research outputs found

    The Fire and Smoke Model Evaluation Experiment—A Plan for Integrated, Large Fire–Atmosphere Field Campaigns

    Get PDF
    The Fire and Smoke Model Evaluation Experiment (FASMEE) is designed to collect integrated observations from large wildland fires and provide evaluation datasets for new models and operational systems. Wildland fire, smoke dispersion, and atmospheric chemistry models have become more sophisticated, and next-generation operational models will require evaluation datasets that are coordinated and comprehensive for their evaluation and advancement. Integrated measurements are required, including ground-based observations of fuels and fire behavior, estimates of fire-emitted heat and emissions fluxes, and observations of near-source micrometeorology, plume properties, smoke dispersion, and atmospheric chemistry. To address these requirements the FASMEE campaign design includes a study plan to guide the suite of required measurements in forested sites representative of many prescribed burning programs in the southeastern United States and increasingly common high-intensity fires in the western United States. Here we provide an overview of the proposed experiment and recommendations for key measurements. The FASMEE study provides a template for additional large-scale experimental campaigns to advance fire science and operational fire and smoke models

    Participatory sensing as an enabler for self-organisation in future cellular networks

    Get PDF
    In this short review paper we summarise the emerging challenges in the field of participatory sensing for the self-organisation of the next generation of wireless cellular networks. We identify the potential of participatory sensing in enabling the self-organisation, deployment optimisation and radio resource management of wireless cellular networks. We also highlight how this approach can meet the future goals for the next generation of cellular system in terms of infrastructure sharing, management of multiple radio access techniques, flexible usage of spectrum and efficient management of very small data cells

    Steps in Metagenomics: Let’s Avoid Garbage in and Garbage Out

    Get PDF
    Is metagenomics a revolution or a new fad? Metagenomics is tightly associated with the availability of next-generation sequencing in all its implementations. The key feature of these new technologies, moving beyond the Sanger-based DNA sequencing approach, is the depth of nucleotide sequencing per sample.1 Knowing much more about a sample changes the traditional paradigms of “What is the most abundant?” or “What is the most significant?” to “What is present and potentially sig­nificant that might influence the situation and outcome?” Let’s take the case of identifying proper biomarkers of disease state in the context of chronic disease prevention. Prevention has been deemed as a viable option to avert human chronic diseases and to curb health­care management costs.2 The actual implementation of any effective preventive measures has proven to be rather difficult. In addition to the typically poor compliance of the general public, the vagueness of the successful validation of habit modification on the long-term risk, points to the need of defining new biomarkers of disease state. Scientists and the public are accepting the fact that humans are super-organisms, harboring both a human genome and a microbial genome, the latter being much bigger in size and diversity, and key for the health of individuals.3,4 It is time to investigate the intricate relationship between humans and their associated microbiota and how this relationship mod­ulates or affects both partners.5 These remarks can be expanded to the animal and plant kingdoms, and holistically to the Earth’s biome. By its nature, the evolution and function of all the Earth’s biomes are influenced by a myriad of interactions between and among microbes (planktonic, in biofilms or host associated) and the surrounding physical environment. The general definition of metagenomics is the cultivation-indepen­dent analysis of the genetic information of the collective genomes of the microbes within a given environment based on its sampling. It focuses on the collection of genetic information through sequencing that can target DNA, RNA, or both. The subsequent analyses can be solely fo­cused on sequence conservation, phylogenetic, phylogenomic, function, or genetic diversity representation including yet-to-be annotated genes. The diversity of hypotheses, questions, and goals to be accomplished is endless. The primary design is based on the nature of the material to be analyzed and its primary function
    • …
    corecore