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Steps in Metagenomics:  
Let’s Avoid Garbage in and Garbage Out 

Jacques Izard 

University of Nebraska–Lincoln

jizard@unl.edu

Why Metagenomics? 

Is metagenomics a revolution or a new fad? Metagenomics is tightly 
associated with the availability of next-generation sequencing in all its 
implementations. The key feature of these new technologies, moving 
beyond the Sanger-based DNA sequencing approach, is the depth of nu-
cleotide sequencing per sample.1 Knowing much more about a sample 
changes the traditional paradigms of “What is the most abundant?” or 
“What is the most significant?” to “What is present and potentially sig
nificant that might influence the situation and outcome?” Let’s take the 
case of identifying proper biomarkers of disease state in the context of 
chronic disease prevention. Prevention has been deemed as a viable op-
tion to avert human chronic diseases and to curb health care manage-
ment costs.2 The actual implementation of any effective preventive mea-
sures has proven to be rather difficult. In addition to the typically poor 
compliance of the general public, the vagueness of the successful vali-
dation of habit modification on the longterm risk, points to the need of 
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defining new biomarkers of disease state. Scientists and the public are 
accepting the fact that humans are super-organisms, harboring both a 
human genome and a microbial genome, the latter being much bigger 
in size and diversity, and key for the health of individuals.3,4 It is time to 
investigate the intricate relationship between humans and their asso-
ciated microbiota and how this relationship mod ulates or affects both 
partners.5 These remarks can be expanded to the animal and plant king-
doms, and holistically to the Earth’s biome. By its nature, the evolution 
and function of all the Earth’s biomes are influenced by a myriad of in-
teractions between and among microbes (planktonic, in biofilms or host 
associated) and the surrounding physical environment.

The general definition of metagenomics is the cultivationindepen dent 
analysis of the genetic information of the collective genomes of the mi-
crobes within a given environment based on its sampling. It focuses on 
the collection of genetic information through sequencing that can tar-
get DNA, RNA, or both. The subsequent analyses can be solely fo cused 
on sequence conservation, phylogenetic, phylogenomic, function, or ge-
netic diversity representation including yet-to-be annotated genes. The 
diversity of hypotheses, questions, and goals to be accomplished is end-
less. The primary design is based on the nature of the material to be an-
alyzed and its primary function (Figure 1). 

It All Starts with the Study Design 

The goal is not to tell you how to do your science but to emphasize some 
aspects of study design that need careful attention because of the char-
acteristics of the methodologies used in metagenomic studies. It begins 
by identifying the primary objective of the metagenomics project. What 
is the main scientific question you are trying to answer? More than one 
hypothesis can be tested depending on the scope of the experiment and 
the amount of associated data, or metadata, that you collect and use for 
your subsequent analyses. 

The high-dimensionality characteristic of the metagenomics datas-
ets is challenging and is revolutionizing microbiology analytical meth-
odology. What is meant by highdimensional dataset? Let’s take as an 
example the Human Microbiome Project (HMP) 16S ribosomal RNA 
(rRNA)-based characterization of 10 sites from the digestive tract of 
200 individuals. Such analysis required the collection of over 2000 sam-
ples, generating approximately 23 million high-quality sequence reads 
that were assigned to 674 taxonomic clades with their respec tive relative 
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abundance per taxonomic level (e.g., from phylum to ge nus). For ex-
ample, for the genus Pyramidobacter, the database stores the relative 
abundance at each taxonomic level, from the phylum (e.g., “Bacteria | 
Synergistetes”), the most inclusive taxonomic level, to the ge nus (e.g., 
“Bacteria | Synergistetes | Synergistia | Synergistales | Synergistaceae | 
Pyramidobacter”), the least inclusive taxonomic level, and all the tax-
onomic levels between the two.6 From the same study, four body sites 
were further analyzed using whole metagenome shotgun (WMS) se-
quencing from approximately 100 individuals, generating a trillion nu-
cleotides.6 Another example can be extracted from the work of Gian-
noukos et al.7 while developing rRNA depletion methodology for fecal 
samples. They obtained over 100,000 reads per sample.7 In each exam-
ple, each sample has a tremendous amount of genotypic and phenotypic 
information in addition to the metadata (e.g., age, sex, race, and oth-
ers). In addition to the nucleotide data, information about other mole-
cules (e.g., lipids, pro teins, and metabolites) can be collected; increasing 
the complexity and multidimensionality of the dataset. The type of data 
collected will de termine the type of analyses performed. These analyses 
can help answer questions such as: “What are the organisms present?”, 
“What can these organisms potentially do?”,’ “What is their metabolic 
capability?”, and “How do they influence the host?” (Figure 1). Planning 
the structure of samples and metadata acquisition as well as the anal-
ysis pipeline to be used, prior to the start of the experiment, will avoid 
bottlenecks and optimize utilization of funds. 

Fig. 1. Metagenomic analysis process and some of the overarching questions that 
can be answered by the different methodologies.
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During the study design phase, investigators need to take into con-
sideration the ethical and legal issues related to metagenomics data col-
lection and analysis. Some of the constrains of metagenomics studies 
utilizing human subjects include Institutional Review Boards, informed 
consent, and other issues related to the protection of the identifiable 
health information of the human subjects (e.g., HIPAA Privacy Rule in the 
United States). For examples of consent documentation and standard 
operating procedures, the National Institutes of Health HMP has made 
those document public and available online ( http://www.hmpdacc.org 
).8 It is essential for the consent procedures to accurately state what data 
will be gathered, how it will be used, and how it will be stored. All efforts 
should be made to secure information and confidentiality of the genetic 
material and associated data over time. This includes both the physi-
cal storage of the information, data deposition and data sharing, even 
when the samples are deidentified. For environmental samples, having 
the right of access and sampling permits is critical as geolocation is now 
required with the sample data submission to repository. It is important 
to point out that any samples collected from a host will contain a signif-
icant amount of the host genetic material. The po tential contamination 
of samples with the host genetic material adds to the complexity of the 
metagenomics studies, and sophisticated com putational pipelines for 
the removal of the contaminating reads are es sential to generate mean-
ingful conclusions and, in the case of human subjects, to protect the pri-
vacy and confidentiality of the sample donor. Figure 2 shows the impact 
of human “contamination” on the amount and quality of the data col-
lected using shotgun sequencing of human samples from 16 different 
body sites.8 When working with different mod els, it should be noted that 
the genome of a brown rat is not that much smaller than that of a hu-
man (over 3 billion base pairs), and that the corn genome is over 2 billion 
base pairs. Although protists and fungi are much smaller, their genomes 
are still composed of few million base pairs. The knowledge of your bi-
ological system of interest will be criti cal to optimize the study design. 

Have a Statistical Analysis Plan in Place Before Starting 

Planning for statistical analysis should be an integral part of the study de-
sign. Although many experimental designs can be performed in metage-
nomics project, there is no single path to a successful strategy. While us-
ing metagenomic or metatranscriptomic approaches, it is es sential to 
refer to the specific needs of each experiment. 

http://www.hmpdacc.org
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The statistical analysis plan should take into account the characteris-
tics of the experiment (in human studies, this would be the inclusion and 
exclusions criteria), the rate of sample acquisition (this would include the 
rate of human subject recruitment that will determine if you are working 
with one or more batch of datasets), the descriptive objectives, testable 

Fig. 2. Impact of quality and human filtering on shotgun metagenomic dataset. 
Thorough quality filtering and removal of reads resulting from human DNA contam-
ination was performed on all shotgun metagenomic data of the Human Microbi-
ome Project (average of 13 Gb/sample). The variation in fraction of reads per sam-
ple removed across the 18 body sites is shown by (A) boxplots for % of human and 
of (B) quality filtered reads. (C) Total amount of usable data (white) per site signif-
icantly varied because of (i) the different number of samples per site, (ii) the differ-
ential impact of human contamination (dark gray), and (iii) the differential impact 
of quality filtering (light gray). (D) Summary view of the usable fractions versus hu-
man and quality filtered data, per body site. (Reprinted by permission from Mac-
millan Publishers Ltd.8)
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hypotheses, the statistical methods that might be stand alone or imbed-
ded in bioinformatics tools or pipelines, etc. One of the direct advantages 
of planning ahead is that when you have the data in hand, you’ll have a 
strategy in place to start the analysis. This is critical as next-generation 
sequencing provides a tremendous amount of data and you want to re-
main focused on your primary objective(s). After the accom plishment of 
your primary objective(s), exploratory analyses and ad ditional hypothe-
ses investigation or formulation is always a possibility. 

The most basic question about the research plan should be “Are 
enough samples being collected from each site or from enough sub-
jects to make meaningful conclusions?” To properly assess the degree of 
simi larity or dissimilarity between bacterial communities, a measurable 
diff erence, or effect size, is necessary. In general, the smaller the effect 
size and the greater the variability within a group of samples, the larger 
the number of samples is required to achieve adequate statistical power. 

For determining sample size for experiments using metagenomic tax-
onomic data, the work derived from the HMP provided the first avail-
able calculation and software package9 (see chapter 6 by La Rosa and 
colleagues). For metagenomics and metatranscriptomics, standardized 
methods to assess the number of subjects (or independent samples) 
and reads are yet to be developed. If you are planning to use both a 
16S rRNA gene-targeted approach and whole-metagenome shotgun 
sequencing, a two-stage experimental design is an option to focus on a 
subset of samples.10 

The complexity of your sample will greatly influence the depth of se
quence coverage in WMS and metatranscriptomics sequencing proj-
ects. As mentioned above, host genomic information can represent a 
significant amount of genetic data obtained through nextgeneration 
sequencing approaches, and this information should be part of an op-
timized study design. 

If the complexity of the sample is low (as determined by more tradi-
tional methods), you may be able to estimate the depth of sequencing 
coverage needed, in order to sample the whole metagenome. Although 
each next-generation sequencing platform has its unique biases and 
as sociated errors (an issue not restricted to next-generation sequenc-
ing), metagenomic analyses assume that the reads are sampled ran-
domly, in dependently, and evenly distributed across all the genomes in 
the metage nome.11,12 To calculate the coverage, you need to know the 
amount of material (nucleotide amount) you are using and the size of 
the genomes or an average size for that environment. Figure 3 provides 
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an overview of expected genome size in prokaryotes that can be com-
plemented by other resources providing the exact information on spe-
cific genomes.13–16 The correlation between G+C content and chromo-
some size can be pos itive, negative, or not significant depending on the 
clade from kingdom to species.15 To our advantage, most chromosomes 
within a species have a similar pattern of correlation between G+C con-
tent and chromosome size; however, outliers are common.15 

Longitudinal studies present their own challenges and can be indepen-
dently analyzed at each time point, along the timeline as well as across 
body sites17,18 (see chapter 7 in this book). When feasible, the collection 
of the metadata in between the time points is also critical in understand-
ing the dynamic signatures of microbial population modification. Pool-
ing the samples might seem to be a good strategy to reduce cost and 
reduce sample variation. However, this approach loses all of the low ge-
netic representation and the ability to make inferences about the micro-
bial population. 

Fig. 3. Distribution of genome size based on temperature and habitat. (A) Distribu-
tion of genome sizes among prokaryotes with different growth temperature ranges. 
The differences in genome size between mesophiles, thermophiles, and hyperther-
mophiles are significant (Wilcoxon ranksum test, P < 1.9 × 10−5 and P < 7.9 × 10−3 
for mesophiles–thermophiles and thermophiles–hyperthermophiles, respectively), 
but not between psychrophiles and mesophiles (Wilcoxon rank-sum test, P = 0.082). 
(B) Distribution of genome sizes among different habitats. Habitats are ordered ac-
cording to environmental variability from unvarying (host associated) to the most 
variable environment (terrestrial). The distributions of genome sizes differ between 
habitats (Wilcoxon ranksum test, P < 0.018, P < 0.0005, P < 0.0028, for specialized
aquatic, aquatic-multiple, and multiple-terrestrial, respectively), with the exception 
of host-associated habitats (Wilcoxon rank-sum test, P = 0.67, for comparison be-
tween host-associated and specialized). The red vertical marks are the medians, the 
edges of the box are the 25th and 75th percentiles, the whiskers extend to the most 
extreme data points not considered outliers (99% of all data if the data are normally 
distributed), and outliers are individually plotted as red crosses. Reprinted by per-
mission from Oxford University Press.16
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You might not find a metagenomic dataset to help or guide you in the 
experimental design phase. Instead, previous results using other molecu-
lar techniques or culture-based methods might be an alternative source 
of help in the design. If you were looking at the same question with a 
more traditional method, you should have enough samples to detect dif-
ferences if they are present. 

Metadata Is Needed to Provide Context to the Analysis 

Critical to any metagenomic study is the quality and extent of the con-
textual metadata. Metadata is what will enhance your analysis beyond 
the most obvious evidence. It provides context to the experiments and 
allows for meaningful comparisons between studies, while deepening 
our understanding of the dataset. With a greater depth of information, 
a broader knowledge of the “environmental factors” is needed. Although 
not the focus of an experiment, seemingly extraneous data may become 
important. For example, information on the source of carbon for mi-
crobial metabolism might be later identified as a confounding variable 
in an experiment. It can be as simple as the source of sugar intake for a 
subject or the nature of the pollutant for a soil sample. 

The information about the sample location or its relative position 
to other samples can be included in the analyses. The concept of bio-
geography goes beyond the description of environmental features that 
influence the spatial distribution of the microorganisms. It aims to un
derstand the metabolic processes within the microbes’ own niche and 
their relationships with other biological niches. The niche might be the 
different sites in the oral cavity, along the digestive tube, or in the skin.19– 

21 Large-scale data visualization and analysis tools have been created to 
help us better understand these positional aspects22. 

As we are discovering the microbiome as an interdependent organ of 
any biological system,5 we may need to redefine what are the best as
sociated data to collect along with the genomic sample. Although blood 
analyses might reflect the systemic inflammation of a human subject, the 
levels of air particles less than 2.5 mm in diameter (PM2.5) that the sub ject 
is exposed to might contribute to the severity of their asthma, modi fying 
the microbiome, which, in turn, can modify the responsiveness to med-
ication.23,24 In longitudinal datasets, seasons and length of the day have 
been shown to influence the ocean microbiome.25 

Defining or redefining the phenotype of interest might have a cru-
cial importance. Because the phenotype is the results of the interaction 
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be tween the genotype and the organism’s environment in all its com-
plexity, including the microbiome, we are required to renew our atten-
tion to the granularity of the defined phenotype. From the macro to the 
molecular scale, new considerations that were previously neglected be-
cause of the lack of significance might be at play when scrutinized with 
a different sliver or window of observation. Guidelines for data organiza-
tion and naming standardization are already in place and are being im-
proved upon, as described below. 

Sampling: The Basis of Good Results 

Although the technology of the sequencing platforms has evolved, they 
all focus on sequencing the nucleic acids, either DNA or RNA. The source 
of the microbiome sample greatly varies, from the environment, plants, 
insects, and animals to humans. The published data on environ mental 
samples have been as diverse as soil, hot springs, seawater, air, as well 
as home and hospital surfaces. For plants, the associated microbi ome 
above and below the ground has been studied. In insects, animals, and 
humans, multiple body sites have been investigated. In many of the sub-
sequent steps, the hypothesis involved, the goals of the project, the avail-
able facilities and personnel, and the available funds play a role in the 
decision matrix. 

Contamination will be detected as an integral component of the sam-
ple because of the depth of the data being acquired. Only a few years 
ago, understanding microbial diversity often led the investigator to do 
a series of cloning experiments resulting in the identification of approxi-
mately 100 randomly selected organisms per sample. Later, the availabil-
ity of microarrays allowed the identification of few hundreds of organisms 
per sample. More recently, by using targeted 16S rRNA gene next-gener-
ation sequencing, tens of thousands of organisms can be identified per 
sample.1,26 It is recommended to examine each step in the context of po-
tential inadvertent contamination by nucleic material or potential inhib-
itor for downstream applications. This is particularly applicable to tools 
that are reused, where proper cleaning and steriliza tion procedures are 
essential. The following guidelines are simple ways to increase the quality 
of sample preparation. Not talking over a bio logical sample or wearing a 
facemask would eliminate contamination by the breath. While protecting 
the sample using gloves, we should not forget that a simple touch of the 
skin or a surface would contaminate the glove that, in turn, might con-
taminate the sample itself. Natural DNAses and RNAses may potentially 
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damage the sample. It is most often about applying common sense in 
the context of the depth of the data to be gathered. In other words, if 
you want to know the microbiome of the banana peel on the plant but 
you drop the banana in the field, you are going to also learn about the 
microbiome of that square of earth as well as that of the fruit. 

The proper sampling protocol is essential to a successful metagenom-
ics study, since the accurate identification of many organisms depends 
on the collection and handling of the sample. Defining the geographical 
location or the specific body site, surface, depth volume, or quantity to 
be collected are necessary for sampling standardization. When possible, 
keep the samples concentrated and process them for immediate stor-
age. Consistency in all aspects will both preserve the quality of the sam-
ple and limit the batch effect during the analysis, enhancing the signal 
of interest. Protecting the samples against the element (wind, sun, etc.) 
sounds to be a good advice, but keep in mind that sample desiccation is 
a common problem when working with small samples. 

Analyzing true and technical replicates of a sample and assessing 
whether observed differences are statistically significant are a good prac
tice. True replicates, when the same site is sampled more than once, are 
rarely done in metagenomics study as the sensitivity of the technique 
may easily show differences when sampling a site multiple times because 
of the biological organization of the site.27 Technical replicates, when the 
sample is split for processing, are easy to perform for reassurance.28,29 

Sample Storage 

Storage and sampling are tightly linked issues. It is not always possible 
to have a freezer or an expert on location when the sample is collected. 
Solutions for these problems affecting the downstream steps need to 
be identified before starting the study. The nature of the type of sample 
is too diverse to enter in all the details, but one key question will drive 
the process: “How much sample do I really need?” The associated ques-
tions would be: “Do I need DNA, RNA, proteins, lipids, small molecules, 
etc., from the same sample?”, “Will the sample be used for more than 
one application, preparation, or extraction?”, as well as any other ques-
tions related to the present or the future study applications that might 
be of interest later on. 

Many options are available, from immediate extraction to long-term 
storage in liquid nitrogen. The nature of the sample often dictates what 
is the best protocol to avoid sample desiccation, denaturation, lysis, 
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deg radation, etc. As immediate extraction on site or access to an −80°C 
freezer is not always an option, alternatives must be developed to pre-
serve the sample, its integrity, and its value for the question(s) at hand. 
Similarly, for a vaccine, the quality of storage and its consistency might 
influence the sample quality. Multiple companies are offering sampling 
kits with fixative but those are rarely validated by comparative analysis. 
A metagenomic and metatranscriptomic comparison of human stools 
flash frozen, preserved in ethanol, or in RNA later show that those fixa
tives are compatible with large-scale self-collection by human subjects 
in a geographically disseminated cohort.30 

Sampling cost is often neglected. You might have multiple steps in 
your process to reach the final storage space, and there is no issue with 
that. Optimize your process to be the most consistent for each sample 
or per batch of samples. It should be stressed that whether you work on 
a large human subject cohort or a large field collection, the cost of per-
sonnel, sampling equipment (single use when possible), and transient as 
well as permanent storage adds up quickly. With the sample collected 
and in storage, nucleotide extraction will be the next step. 

Sample Extraction 

The sample input into a metagenomics pipeline can be extremely di-
verse. The DNA and/or the RNA need to be extracted from the sample 
prior to any analysis. The type and source of the sample determines the 
most appropriate extraction protocol. This step, simplified by the avail-
ability of nucleic acid extraction kits, is crucial to the success of the anal-
ysis, as the quality of extracted DNA and/or RNA influences all subse-
quent steps. Before selecting the most appropriate extraction protocol, 
a care ful review of the literature and validation of the protocol for your 
specifi c sample is recommended. The choice of protocol depends on 
the DNA or the RNA yield, shearing, removal of contaminants (which 
could be inhibitory to subsequent steps), and representation of diver-
sity. A com piled list of extraction protocols for different sample sources 
has been recently published.31 Some other criteria have to be taken in 
consider ation as described below. 

As mentioned above, the source of the sample is very important in 
the selection of the extraction protocol. A classic example of this is dem-
onstrated by the inhibitory effect of humic acids in enzymatic reactions, 
such as polymerase chain reaction (PCR), performed using nucleic ac ids 
extracted from manure or soil.32,33 Thus, elimination of humic acids needs 
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to be part of the process, which might be already optimized by a com-
patible specific kit. 

How the sample was preserved also matters. An example is the DNA 
recovery from formalinfixed paraffinembedded tissue, as the tissue is 
not readily available to traditional protocols.34,35 

Differences in the structures of bacterial cell walls cause bacterial cell 
lysis to be more or less efficient.36,37 The differential efficiency of the lysis 
can distort the apparent composition of the microbial communities and 
introduce bias in estimates of relative abundance.36–39 

Consistency in sample handling and processing is key to avoid batch 
effect. Training, standard operating procedure, and good quality controls 
greatly help in minimizing the possibility of batch effect. Nucleic acids 
extraction automation is a good alternative when sufficient samples are 
available and the method of extraction has been validated.40 

Extracting more than one macromolecule at the time is an option. Kits 
and protocols allow the purification of both DNA and RNA from the same 
sample, while others go further by recovering proteins as well.31 An on-
going challenge is to purify other macromolecules from the same sam-
ple, which might require a different set of strategies. 

Removing the host DNA might improve the quality of your analysis 
and decrease the cost of the sequencing by requiring magnitude(s) less 
of reads for the same amount of information. Differential lysis of eu
karyotic cells (personal communication, Dr Eva Haenssler) and separa tion 
of methylated DNA based on CpG site methylation density between the 
host and the microbes41 are the two strategies used by commercial kits. 
The attempt to decrease host DNA is not only limited to verte brate hosts 
but successful contaminant DNA removal have also been performed in 
plants.42,43 

Choosing the Right Platform 

The cost of sequencing has drastically decreased (Figure 4), opening 
the door to many new investigations that were previously too costly. Al-
though the cost per base of sequencing has decreased, the total cost of 
a run is still significant because the number of megabases sequenced 
per run is steadily increasing (Table 1). The initial entry cost might be 
still too high for some pilot projects. Based on those same parameters, 
traditional techniques such as PCR-DGGE (PCR followed by a denaturing 
gradient gel electrophoresis), cloning experiments followed by Sanger-
based DNA sequencing, and microarrays approaches are here to stay.44,45 
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Which sequencing platform to use? Because of the varied nature of 
scientific studies, there is no single approach that is recommended. De-
tailed review of the literature, discussions with colleagues and sequenc-
ing facilities, cost, availability, turnaround time, and scope of the proj-
ect will be part of the decisionmaking process. Let’s not forget that the 
hypothesis and the goal should be the true drivers. Table 1.1 shows the 
characteristics of the different highthroughput sequencing technolo gies. 
Each sequencing platform is characterized by their strength and weak-
nesses regarding read length, bias in AT- or GC-rich regions and their 
ability to sequence homopolymers.46,47 

How much sequencing depth is needed? Determining the number 
of reads required is a tradeoff between the minimal numbers of reads 
needed to allow an informative and statistical significant analysis and 
the avail able budget. This choice is driven by both the platforms and 
your experi mental needs such as the previous knowledge of the relative 

Fig. 4. Reduction of the cost of DNA sequencing over time. The white line reflects 
the Moore’s Law pace. The Y axis shows, in logarithmic scale, the cost of sequencing 
per raw megabase of raw unassembled DNA sequence. The outpacing of Moore’s 
Law pace matches the availability of the first nextgeneration sequencing platforms, 
in 2008, competing with Sanger-based DNA sequencing technology. (Courtesy of 
the National Human Genome Research Institute.45)
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Table 1. Sequencing Platforms and Characteristics Based on Online Manufacturer Technical Specifications

Sequencer  Read   Run Time   Reads   Yield (b)a  Mate Pair  Use in  
 Length (b)a (h) (d)b Per Run  Information  Metagenomics 

ABI 3730xlc  500–900  6–10 h  –  0.05–0.08 Mb  Yes  Not anymore 

Roche 454   ∼400  10 h  ∼100,000  35 Mb  No  Yes  
  GS Juniord

Roche 454   ∼700  23 h  1 million  700 Mb  No  Yes  
   GS FLX+d

Illumina  ∼300  5–65 h  25 million  0.3–15 Gb  Yes  Yes  
   MiSeqd 

Illumina   ∼300  12-30 h  130–400   20–120 Gb  Yes  Yes  
   NextSeq 500      million

Illumina   ∼125–150  7 h to 6 d  300 million   10–180 Gb  Yes  Yes  
   HiSeq 2500d      to 2 billions

Illumina   ∼150  <3 d  3 billions  1.6–1.8 Tb  Yes  Not yet  
   HiSeq Xd

5500 SOLiDd  ∼60  7 d  –  90 Gb  Yes  Yes 

5500xl SOLiDd  ∼60  7 d  –  300 Gb  Yes  Yes 

Ion PGM   ∼200 or  2–4 h or 0.4–0.5 million 30–100 Mb  No  Yes  
   systeme    ∼400      4–7 h      on 314 chip     on 314 chip  
      2–3 million     300 Mb to 1 Gb 
      on 316 chip     on 316 chip 
      4–5.5 million     600 Mb to 2 Gb 
      on 318 chip         on 318 chip  

PacBio   4200–8500  0.5–3 h  50,000   275–375 Mb  No  Yes  
   RS II SMRTe      per cell    per cell 

a. b stands for base and its multiple 
b. h: hours; d: days 
c. First-generation DNA sequencing or Sanger-based DNA sequencing technology. ABI 3730xl: Applied Biosystems 3730xl DNA 

Analyzer (Life Technologies Corporation, Carlsbad, CA). 
d. Second-generation DNA sequencing. Roche 454 GS Junior and Roche 454 GS FLX+ systems from Roche Diagnostics Cor-

poration (454 Life Sciences, Branford, CT). Illumina MiSeq, HiSeq 2500 and HiSeq X from Illumina, Inc. (San Diego, VA). 5500 
and 5500xl SOLiD sequencer from Life Technologies Corporation (Carlsbad, CA). 

e.  Third-generation DNA sequencing. Ion PGM system from Life Technologies Corporation (Carlsbad, CA). PacBio RS II SMRT 
system is based on singlemolecule, realtime (SMRT) DNA sequencing technology from Pacific Biosciences (Menlo Park, CA).
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abundance of your organism(s) or metabolic pathway(s) of interest. If 
your metage nome or metatranscriptome is of a relatively low complex-
ity, you can use available genome sequences to evaluate the coverage 
needed.48 For a meta transcriptome, you’ll have to adapt the sequencing 
coverage if your focus is the most abundant transcripts or the rare tran-
scripts. It has been shown that millions of 16S rRNA reads do not appre-
ciably increase the extracted information and that a costefficient read 
number is sufficient to discrimi nate adjacent sites.1,9 In contrast, during 
the analysis of the stool micro biome of 100 individuals, increasing the 
depth of sequencing from 4.5 to 11.7 Gb on average per sample, the hu-
man fecal gene catalog increased from 3.349 to 5.1 million nonredundant 
microbial genes,8 respectively. 

Multiplexing of samples has both decreased the cost and allowed to 
control the number of reads for batch of samples. This approach tags 
each sample with a unique barcode that is also sequenced. The post-se-
quencing computing pipeline allows the reads to be binned based on 
the sample of origin, allowing many samples to be simultaneously se-
quenced.50 Additional hidden costs that should be kept in mind are li-
brary construction required for preparing the DNA to be sequenced, kits, 
consumables, labor, instrument initial costs and maintenance, per sonnel 
support, indirect cost rate, etc. Further additional costs might be associ-
ated with the bioinformatics required for filtering lowquality reads, se-
quence assembly for pair-ended reads, removing human origin contam-
inating reads, providing raw or processed reads to your laborato ry, and 
data submission. It’s a discussion that you may want to have up front with 
your collaborator and/or your sequencing facility of choice.

Read quality is always a parameter to take into account. One of the 
most common metrics for assessing sequence quality data is the Q score. 
Low Q scores (below 20) can lead to increase false-positive variants. Q20, 
which represents an error probability of 1%, is an accepted community 
standard for a high-quality base, similar to the expectation of Sanger-
based DNA sequencing. As the technologies improve, we can expect 
qual ity standard of Q30

 (error probability of 1–1000) and above to be the 
norm. 

Data Storage and Data Analysis 

Next-generation sequencing moved us from the kilo- and megabytes size 
files to the mega and terabytes size file world. Although this might not 
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be of great importance when you are performing a single metagenomics 
experiment, it can quickly become an issue in large-scale studies. To put 
this in context, the HMP 16S rRNA-targeted approach generated about 
250 megabases, while the shotgun sequencing approach produced over 
3 terabases.8 While the former can be handled on a traditional computer, 
the latter requires a lot of computing time (or CPU hours) on a com puter 
or computer cluster with another class of technical specifications. An al-
ternative is the use of remote or cloud computing power through virtual 
machine approaches.51 Be sure that the data and related informa tion is 
secured during transfer and in the cloud. 

When focusing on 16S rRNA-targeted approach, the availability of 
packaged analysis pipelines greatly facilitates the process. Mothur and 
QIIME are not the only available options, although both have shown con-
sistency of improvement and regular updates over the last few years.52,53 

These pipelines include statistical tools that allow a complete analysis of 
your dataset including your metadata. As we have been fo cusing on the 
quality of the input and output of metagenomic analysis, it is important 
to note that the denoising step is a crucial step that can increase micro-
bial diversity (up to a meaningless amount if read qual ity filtering and 
chimera removal are not performed) or restrict the ob served diversity 
based on the settings.54 There is a balance that must be attained; how-
ever, this can be a bit more difficult to achieve when con ducting the in-
vestigation of an understudied microbiome. 

Whole genome shotgun sequencing leads to the information about 
the DNA and/or the RNA in the sample. The applications can and have 
been numerous. The focus might be on metabolism, discovering new 
metabolic or antibiotic pathways, phylogeny, site comparison, the dis-
tribution of single nucleotide polymorphism in the microbiome(s), the 
influence of cancer or antibiotic treatment, the behavioral effect, etc. 
From the same dataset, phylogenetic placement of the microbiota pres-
ent in the sample can be obtained from the gene pool instead of the 16S 
rRNA gene as their relative abundance in the dataset is low.8,55,56 Pack-
aged analysis pipelines including statistical tools are available to down-
load or as an Internet resource. An incomplete list of those resources in-
cludes CAMERA,57 EBI metagenomics,58 IMG/M,59 MEGAN,60 METAREP,61 

and MG-RAST.62 For all metagenomics applications, commercial software 
replace or complement freely available tools. 

All bioinformatics tools rely on databases to add layers of informa tion, 
from phylogeny to function. While some are based on only one technol-
ogy (such as the gene catalogs from METAhit and the HMP), others have 
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evolved through generations of approaches and technologi cal advance-
ments such as COG,63 KEGG,64 GenBank, and all the other international 
depositories.65 The lack of standardization, inconsistent annotation, and 
the different technologies leading to specific errors un known to the in-
vestigator create some challenges. Curated databases are attempts to 
limit those issues and often decrease the dataset size by re moving infor-
mation (e.g., sequences) not relevant to the focus in ques tion. Some of 
these databases include CAZy,66 Greengenes,67 HOMD,14 and MetaCyc.68 

The power of additional layers of information is in their enrichment of 
the content that we can derive from a dataset. However, we should keep 
in mind that part of the information from the dataset is unavailable as it 
did not perfectly match to a previously obtained da taset. With the diver-
sity of microbial strains yet to be sequenced, the answer to your scien-
tific question might reside in the conserved proteins without associated 
function, or gene(s) or gene set that have never been deposited before. 

Data and Publication 

Any metagenomic project should include a plan for sharing the data 
collected to the scientific community, including sequence data and 
meta data. The International Nucleotide Sequence Database Collabo-
ration (INSDC, http://insdc.org ) hosts some of the repositories for the 
collec tion and dissemination of nucleic acid datasets. INSDC is a joint 
effort hosting the following computerized databases: DNA Data Bank 
of Japan (Japan), GenBank (USA), and the European Nucleotide Archive 
(based in the United Kingdom).69 

The need to archive welldefined contextual metadata has been rec
ognized by the community, leading to the creation of the Genomic Stan-
dards Consortium. Their mission is to work toward: 1) the imple mentation 
of new genomic standards, 2) methods of capturing and ex changing the 
information captured in these standards, and 3) harmo nization of infor-
mation collection and analysis efforts across the wider genomics commu-
nity.70 From this effort arose the creation of minimum information require-
ment for both genomes and metadata to be sub mitted to the journal 
and sequence repositories. The MIGS (minimal information about a ge-
nome sequence), MIMS (minimal informa tion about metagenome se-
quence), MIMARKS (minimal information about marker gene sequence), 
and MIxS (minimum Information about any (X) sequence) specifications 
are checklists that both standardize and enhance our ability to further 

http://insdc.org
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analyze datasets for either training or complementary analysis.71,72 The 
adoption of such standards elevates the quality, accessibility, and utility 
of the information collected by the data repository. 

As of yet, there is no standard format to present how the data was an-
alyzed. In the best interests of all, the format should include the meth-
ods, tools, and parameters used in the analysis. One option is to make 
the information available as an online appendix to the published article. 
There is no such thing as pressing a button and getting the completed 
analysis. Professional scientists, students, and citizen scientists encoun-
ter the same issues. Similar standards of high quality should be put into 
service for the benefits of the biosphere. 

Let’s Talk About the Status Quo 

In science, the status quo, the existing state of affairs, and the dogma, 
the established opinion and doctrine, often go hand in hand. Every time 
a new technology challenges, the status quo resistance occurs, not al-
ways in the most constructive of ways. It is not our place to choose for 
you where you stand in the debate regarding the progresses supported 
by metagenomic approaches. One clear progress is the flow of data. It 
creates more statistical power to discriminate the aspect(s) of your hy-
pothesis validation, and offers opportunities for validating previously 
published hypothesis and for hypothesis generation. 

What about the “old data,” the ones published using more restricted 
or better focused analyses? There is no current methodology that can 
yet replace quantitative PCR for detecting the relative abundance of host 
versus microbial genetic abundance. The previous approaches for cultiva-
tion-independent analyses are here to guide us by facilitating the anal-
ysis and providing the trampoline needed for the next discovery. The 
high dimensionality of the datasets is potentially a challenge, but it also 
brings new opportunities to create a validated system biology approach 
to better understand biological function. 

The conceptual and practical details are project specific and all part
ners should be part of the discussion and project building (primary in-
vestigator, co-investigators, statistician, bioinformatician, core facilities, 
providers, suppliers, IT department, etc.). This is a call to students, pro-
fessional scientists, and citizen scientists alike, to create new datasets and 
tools that are needed. Please research, share, and disseminate. 
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