8,372 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    PID control system analysis, design, and technology

    Get PDF
    Designing and tuning a proportional-integral-derivative (PID) controller appears to be conceptually intuitive, but can be hard in practice, if multiple (and often conflicting) objectives such as short transient and high stability are to be achieved. Usually, initial designs obtained by all means need to be adjusted repeatedly through computer simulations until the closed-loop system performs or compromises as desired. This stimulates the development of "intelligent" tools that can assist engineers to achieve the best overall PID control for the entire operating envelope. This development has further led to the incorporation of some advanced tuning algorithms into PID hardware modules. Corresponding to these developments, this paper presents a modern overview of functionalities and tuning methods in patents, software packages and commercial hardware modules. It is seen that many PID variants have been developed in order to improve transient performance, but standardising and modularising PID control are desired, although challenging. The inclusion of system identification and "intelligent" techniques in software based PID systems helps automate the entire design and tuning process to a useful degree. This should also assist future development of "plug-and-play" PID controllers that are widely applicable and can be set up easily and operate optimally for enhanced productivity, improved quality and reduced maintenance requirements

    Analysis and Application of Advanced Control Strategies to a Heating Element Nonlinear Model

    Get PDF
    open4siSustainable control has begun to stimulate research and development in a wide range of industrial communities particularly for systems that demand a high degree of reliability and availability (sustainability) and at the same time characterised by expensive and/or safety critical maintenance work. For heating systems such as HVAC plants, clear conflict exists between ensuring a high degree of availability and reducing costly maintenance times. HVAC systems have highly non-linear dynamics and a stochastic and uncontrollable driving force as input in the form of intake air speed, presenting an interesting challenge for modern control methods. Suitable control methods can provide sustainable maximisation of energy conversion efficiency over wider than normally expected air speeds and temperatures, whilst also giving a degree of “tolerance” to certain faults, providing an important impact on maintenance scheduling, e.g. by capturing the effects of some system faults before they become serious.This paper presents the design of different control strategies applied to a heating element nonlinear model. The description of this heating element was obtained exploiting a data driven and physically meaningful nonlinear continuous time model, which represents a test bed used in passive air conditioning for sustainable housing applications. This model has low complexity while achieving high simulation performance. The physical meaningfulness of the model provides an enhanced insight into the performance and functionality of the system. In return, this information can be used during the system simulation and improved model based and data driven control designs for tight temperature regulation. The main purpose of this study is thus to give several examples of viable and practical designs of control schemes with application to this heating element model. Moreover, extensive simulations and Monte Carlo analysis are the tools for assessing experimentally the main features of the proposed control schemes, in the presence of modelling and measurement errors. These developed control methods are also compared in order to evaluate advantages and drawbacks of the considered solutions. Finally, the exploited simulation tools can serve to highlight the potential application of the proposed control strategies to real air conditioning systems.openTurhan, T.; Simani, S.; Zajic, I.; Gokcen Akkurt, G.Turhan, T.; Simani, Silvio; Zajic, I.; Gokcen Akkurt, G

    Nonlinear system identification and control using state transition algorithm

    Full text link
    By transforming identification and control for nonlinear system into optimization problems, a novel optimization method named state transition algorithm (STA) is introduced to solve the problems. In the proposed STA, a solution to a optimization problem is considered as a state, and the updating of a solution equates to a state transition, which makes it easy to understand and convenient to implement. First, the STA is applied to identify the optimal parameters of the estimated system with previously known structure. With the accurate estimated model, an off-line PID controller is then designed optimally by using the STA as well. Experimental results have demonstrated the validity of the methodology, and comparisons to STA with other optimization algorithms have testified that STA is a promising alternative method for system identification and control due to its stronger search ability, faster convergence rate and more stable performance.Comment: 20 pages, 18 figure

    Modeling and control of complex dynamic systems: Applied mathematical aspects

    Get PDF
    The concept of complex dynamic systems arises in many varieties, including the areas of energy generation, storage and distribution, ecosystems, gene regulation and health delivery, safety and security systems, telecommunications, transportation networks, and the rapidly emerging research topics seeking to understand and analyse. Such systems are often concurrent and distributed, because they have to react to various kinds of events, signals, and conditions. They may be characterized by a system with uncertainties, time delays, stochastic perturbations, hybrid dynamics, distributed dynamics, chaotic dynamics, and a large number of algebraic loops. This special issue provides a platform for researchers to report their recent results on various mathematical methods and techniques for modelling and control of complex dynamic systems and identifying critical issues and challenges for future investigation in this field. This special issue amazingly attracted one-hundred-and eighteen submissions, and twenty-eight of them are selected through a rigorous review procedure

    Validation and Verification of Aircraft Control Software for Control Improvement

    Get PDF
    Validation and Verification are important processes used to ensure software safety and reliability. The Cooper-Harper Aircraft Handling Qualities Rating is one of the techniques developed and used by NASA researchers to verify and validate control systems for aircrafts. Using the Validation and Verification result of controller software to improve controller\u27s performance will be one of the main objectives of this process. Real user feedback will be used to tune PI controller in order for it to perform better. The Cooper-Harper Aircraft Handling Qualities Rating can be used to justify the performance of the improved system

    Data-driven adaptive model-based predictive control with application in wastewater systems

    Get PDF
    This study is concerned with the development of a new data-driven adaptive model-based predictive controller (MBPC) with input constraints. The proposed methods employ subspace identification technique and a singular value decomposition (SVD)-based optimisation strategy to formulate the control algorithm and incorporate the input constraints. Both direct adaptive model-based predictive controller (DAMBPC) and indirect adaptive model-based predictive controller (IAMBPC) are considered. In DAMBPC, the direct identification of controller parameters is desired to reduce the design effort and computational load while the IAMBPC involves a two-stage process of model identification and controller design. The former method only requires a single QR decomposition for obtaining the controller parameters and uses a receding horizon approach to process input/output data for the identification. A suboptimal SVD-based optimisation technique is proposed to incorporate the input constraints. The proposed techniques are implemented and tested on a fourth order non-linear model of a wastewater system. Simulation results are presented to compare the direct and indirect adaptive methods and to demonstrate the performance of the proposed algorithms

    A survey of fuzzy control for stabilized platforms

    Full text link
    This paper focusses on the application of fuzzy control techniques (fuzzy type-1 and type-2) and their hybrid forms (Hybrid adaptive fuzzy controller and fuzzy-PID controller) in the area of stabilized platforms. It represents an attempt to cover the basic principles and concepts of fuzzy control in stabilization and position control, with an outline of a number of recent applications used in advanced control of stabilized platform. Overall, in this survey we will make some comparisons with the classical control techniques such us PID control to demonstrate the advantages and disadvantages of the application of fuzzy control techniques
    • 

    corecore