2 research outputs found

    A Secure Cluster-Based Multipath Routing Protocol for WMSNs

    Get PDF
    The new characteristics of Wireless Multimedia Sensor Network (WMSN) and its design issues brought by handling different traffic classes of multimedia content (video streams, audio, and still images) as well as scalar data over the network, make the proposed routing protocols for typical WSNs not directly applicable for WMSNs. Handling real-time multimedia data requires both energy efficiency and QoS assurance in order to ensure efficient utility of different capabilities of sensor resources and correct delivery of collected information. In this paper, we propose a Secure Cluster-based Multipath Routing protocol for WMSNs, SCMR, to satisfy the requirements of delivering different data types and support high data rate multimedia traffic. SCMR exploits the hierarchical structure of powerful cluster heads and the optimized multiple paths to support timeliness and reliable high data rate multimedia communication with minimum energy dissipation. Also, we present a light-weight distributed security mechanism of key management in order to secure the communication between sensor nodes and protect the network against different types of attacks. Performance evaluation from simulation results demonstrates a significant performance improvement comparing with existing protocols (which do not even provide any kind of security feature) in terms of average end-to-end delay, network throughput, packet delivery ratio, and energy consumption

    Wireless multimedia sensor networks, security and key management

    Get PDF
    Wireless Multimedia Sensor Networks (WMSNs) have emerged and shifted the focus from the typical scalar wireless sensor networks to networks with multimedia devices that are capable to retrieve video, audio, images, as well as scalar sensor data. WMSNs are able to deliver multimedia content due to the availability of inexpensive CMOS cameras and microphones coupled with the significant progress in distributed signal processing and multimedia source coding techniques. These mentioned characteristics, challenges, and requirements of designing WMSNs open many research issues and future research directions to develop protocols, algorithms, architectures, devices, and testbeds to maximize the network lifetime while satisfying the quality of service requirements of the various applications. In this thesis dissertation, we outline the design challenges of WMSNs and we give a comprehensive discussion of the proposed architectures and protocols for the different layers of the communication protocol stack for WMSNs along with their open research issues. Also, we conduct a comparison among the existing WMSN hardware and testbeds based on their specifications and features along with complete classification based on their functionalities and capabilities. In addition, we introduce our complete classification for content security and contextual privacy in WSNs. Our focus in this field, after conducting a complete survey in WMSNs and event privacy in sensor networks, and earning the necessary knowledge of programming sensor motes such as Micaz and Stargate and running simulation using NS2, is to design suitable protocols meet the challenging requirements of WMSNs targeting especially the routing and MAC layers, secure the wirelessly exchange of data against external attacks using proper security algorithms: key management and secure routing, defend the network from internal attacks by using a light-weight intrusion detection technique, protect the contextual information from being leaked to unauthorized parties by adapting an event unobservability scheme, and evaluate the performance efficiency and energy consumption of employing the security algorithms over WMSNs
    corecore