137 research outputs found

    Robust Region-of-Attraction Estimation

    Get PDF
    We propose a method to compute invariant subsets of the region-of-attraction for asymptotically stable equilibrium points of polynomial dynamical systems with bounded parametric uncertainty. Parameter-independent Lyapunov functions are used to characterize invariant subsets of the robust region-of-attraction. A branch-and-bound type refinement procedure reduces the conservatism. We demonstrate the method on an example from the literature and uncertain controlled short-period aircraft dynamics

    Robust Region-of-Attraction Estimation

    Full text link

    Nonlinear constrained and saturated control of power electronics and electromechanical systems

    Get PDF
    Power electronic converters are extensively adopted for the solution of timely issues, such as power quality improvement in industrial plants, energy management in hybrid electrical systems, and control of electrical generators for renewables. Beside nonlinearity, this systems are typically characterized by hard constraints on the control inputs, and sometimes the state variables. In this respect, control laws able to handle input saturation are crucial to formally characterize the systems stability and performance properties. From a practical viewpoint, a proper saturation management allows to extend the systems transient and steady-state operating ranges, improving their reliability and availability. The main topic of this thesis concern saturated control methodologies, based on modern approaches, applied to power electronics and electromechanical systems. The pursued objective is to provide formal results under any saturation scenario, overcoming the drawbacks of the classic solution commonly applied to cope with saturation of power converters, and enhancing performance. For this purpose two main approaches are exploited and extended to deal with power electronic applications: modern anti-windup strategies, providing formal results and systematic design rules for the anti-windup compensator, devoted to handle control saturation, and “one step” saturated feedback design techniques, relying on a suitable characterization of the saturation nonlinearity and less conservative extensions of standard absolute stability theory results. The first part of the thesis is devoted to present and develop a novel general anti-windup scheme, which is then specifically applied to a class of power converters adopted for power quality enhancement in industrial plants. In the second part a polytopic differential inclusion representation of saturation nonlinearity is presented and extended to deal with a class of multiple input power converters, used to manage hybrid electrical energy sources. The third part regards adaptive observers design for robust estimation of the parameters required for high performance control of power systems

    Issues in the design of switched linear systems : a benchmark study

    Get PDF
    In this paper we present a tutorial overview of some of the issues that arise in the design of switched linear control systems. Particular emphasis is given to issues relating to stability and control system realisation. A benchmark regulation problem is then presented. This problem is most naturally solved by means of a switched control design. The challenge to the community is to design a control system that meets the required performance specifications and permits the application of rigorous analysis techniques. A simple design solution is presented and the limitations of currently available analysis techniques are illustrated with reference to this example

    Anti-windup Design for Linear Discrete-time Systems Subject to Actuator Additive Faults and Saturations

    Get PDF
    International audienceIn this paper a method is proposed to design an anti-windup scheme for discrete time linear systems with input saturations and actuator additive failures. This method provides a fault tolerant system reconfiguration mechanism with a control law which compensates for the estimated actuator additive faults and maintains the overall system stability in spite of actuator saturations. The design approach is derived from the solution of linear matrix inequalities (LMI) to guarantee the stability regions. For that purpose the fault tolerant control method is based on a linear quadratic regulator (LQR) and a fault estimator for compensation purposes. This method was tested in realistic simulations with the software Carins (CNES) on a pressure and mass flow rate model of a cryogenic test bench cooling circuit

    Anti‐windup controller design for singularly perturbed systems subject to actuator saturation

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/166157/1/cth2bf00153.pd

    Adaptive control of plants with input saturation: an approach for performance improvement

    Get PDF
    In this work, a new method for adaptive control of plants with input saturation is presented. The new anti-windup scheme can be shown to result in bounded closed-loop states under certain conditions on the plant and the initial closed-loop states. As an improvement in comparison to existing methods in adaptive control, a new degree of freedom is introduced in the control scheme. It allows to improve the closed-loop response when actually encountering input saturation without changing the closed-loop performance for unconstrained inputs.Diese Arbeit präsentiert eine neue Methode für die adaptive Regelung von Strecken mit Stellgrößenbegrenzung. Für das neue anti-windup Verfahren wird gezeigt, dass die Zustände des Regelkreises begrenzt bleiben, wenn dessen initiale Werte und die Regelstrecke bestimmte Bedingungen erfüllen. Eine Verbesserung im Vergleich zu existierenden Methoden wird durch die Einführung eines zusätzlichen Freiheitsgrades erzielt. Dieser erlaubt die Verbesserung der Regelgüte des geschlossenen Regelkreises, wenn das Eingangssignal sich in der Limitierung befindet, ohne diese sonst zu verändern

    Adaptive Neural Network Feedforward Control for Dynamically Substructured Systems

    Get PDF
    (c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works

    Model predictive control for stochastic systems by randomized algorithms

    Get PDF
    The main topic of this thesis is control of dynamic systems that are subject to stochastic disturbances and constraints on the input and the state. The main motivation for dealing with control of such systems is that there is no method available that adequately deals with this problem, despite the fact that stochastic, constrained systems are often encountered in real world problems. For example, in process industry the margins of physical quantities such as temperature, pressure, concentration, velocity and position can be expressed as amplitude constraints in a natural way. Such constraints are usually persistent in that suitable control actions need to be implemented that respect these constraints irrespective of the presence of uncontrolled disturbances that effect the system. Goals of the thesis are to 1. Formulate a mathematical problem for the synthesis of a controller that will achieve desired performance of the controlled system. More precisely, to minimize a performance measure that captures desired performance while respecting constraints in the face of stochastic disturbances. 2. Deduce verifiable conditions under which the problem formulated in 1. is solvable. 3. Formulate a solution concept for the problem in 1. that is based on the model predictive control technique. 4. Create feasible computational algorithms for the synthesis of controllers that solve control problems from 1. within the solution setup from 3. 5. Investigate convergence properties of the approximate solutions obtained by computational algorithms from 4. The main tool that is used in the thesis to solve the problem formulated in 1. is the model predictive control technique. Model predictive control has had a significant and widespread impact on industrial process control. When dealing with stochastic systems, however, application of the standard model predictive control algorithms results in a significant loss in the controlled system performance. Therefore, to deal with the problem 1. within the model predictive control framework, it was necessary to develop alternative model predictive control techniques. Contributions of the thesis are twofold. The first set of contributions is made with regard to the model predictive control of constrained, stochastic systems. In this thesis, we develop a novel approach to the model predictive control of such systems, that is based on the optimization in closed loop over the control horizon and stochastic sampling of the disturbance i.e. a randomized algorithm. The second set of contributions has been made in more general framework of the optimal control of stochastic systems that are subject to input and state constraints. We present a novel problem setup for control of such systems and give initial results that are concerned with solvability conditions for the posed optimization problem and the characterization of the optimal solution
    corecore