
 

Model predictive control for stochastic systems by randomized
algorithms
Citation for published version (APA):
Batina, I. (2004). Model predictive control for stochastic systems by randomized algorithms. [Phd Thesis 1
(Research TU/e / Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR573294

DOI:
10.6100/IR573294

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://doi.org/10.6100/IR573294
https://doi.org/10.6100/IR573294
https://research.tue.nl/en/publications/d8fd6755-ca1b-4be5-8501-7029ade6715a


Page 1 of 155

Model predictive control for stochastic
systems by randomized algorithms

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven,

op gezag van de Rector Magnificus, prof.dr. R.A. van Santen,
voor een commissie aangewezen door het College voor

Promoties in het openbaar te verdedigen op
woensdag 14 januari 2004 om 16.00 uur

door

Ivo Batina

geboren te Split, Kroatië



Page 2 of 155

Dit proefschrift is goedgekeurd door de promotoren:

prof.dr. A.A. Stoorvogel
en
prof.dr.ir. M.L.J. Hautus

Copromotor:
dr. S. Weiland

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Batina, Ivo

Model predictive control for stochastic systems by randomized algorithms / by
Ivo Batina. - Eindhoven : Technische Universiteit Eindhoven, 2004.
Proefschrift. - ISBN 90-386-0812-8
NUR 919
Subject headings : optimal stochastic control / randomized algorithms / multivariable
systems / control systems 2000 Mathematics Subject Classification : 93E20, 68W20,
93C35, 93C99



Page 3 of 155



Page 4 of 155

Eerste promotor: prof.dr. A. Stoorvogel

Tweede promotor: prof.dr.ir. M.L.J. Hautus

Copromotor: dr. S. Weiland

Kerncommissie:

prof.dr. D.Q. Mayne
dr.ir. T.J.J. van den Boom

The Ph.D. work forms a part of the research program of the Dutch Institute of
Systems and Control (DISC).



Page 5 of 155

Contents

1 Introduction 3
1.1 Constraints in systems . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Anti-windup designs . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Control of linear systems with input constraints . . . . . . . . . . . . 8
1.4 Minimization of the maximum peak-to-peak gain: � 1 optimal control

problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 Model predictive control . . . . . . . . . . . . . . . . . . . . . . . . 12
1.6 Goals of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.7 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Model predictive control: an overview 19
2.1 A standard formulation of Model Predictive Control . . . . . . . . . . 19
2.2 Stability issues in model predictive control . . . . . . . . . . . . . . . 26
2.3 Model predictive control and disturbances . . . . . . . . . . . . . . . 32
2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3 Model predictive control for stochastic systems with constrained inputs 45
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Empirical mean . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.4 Algorithm 3.1: An approximate but arbitrarily accurate solution . . . 53
3.5 Algorithm 3.2: A computationally less demanding solution . . . . . . 63
3.6 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4 Model predictive control for stochastic systems with state and input cons-
traints 71
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.2 Optimal control of constrained stochastic systems . . . . . . . . . . . 72
4.3 Solvability conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 77
4.4 Stochastic model predictive controller . . . . . . . . . . . . . . . . . 84
4.5 The algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.6 Numerical example . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5 Optimal control of stochastic systems by measurement feedback 103
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 Optimal control of stochastic systems by measurement feedback . . . 104



Page 6 of 155

5.3 Equivalence condition . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.4 Model predictive controller by measurement feedback . . . . . . . . . 113
5.5 Numerical Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

6 Concluding remarks 127
6.1 Summary of contributions . . . . . . . . . . . . . . . . . . . . . . . 127
6.2 Outline of topics for further research . . . . . . . . . . . . . . . . . . 130

Bibliography 133

Summary 145

Samenvatting 147

Acknowledgments 149

Curriculum Vitae 151



Page 7 of 155

1

Introduction

The goals of this chapter are to motivate a study of control systems with constraints
and to give an overview of available methods for control of such systems. Further-
more, the objectives of the thesis are defined and the outline of the thesis is given.

1.1 Constraints in systems

A successfully designed control system has to be able to control a plant in spite of
requirements that are contradictory, in many cases. A constant push towards higher
quality of products with lower manufacturing costs is an example of contradictory re-
quirements. Usually, the requirements that a control system has to meet are associated
with direct costs, like energy costs, but also with environmental and safety demands.
This requirements are expressed as constraints that have to be respected. It is often
claimed (see [39, 119]), that a control strategy that allows operation of the plant close
to constraints has advantages in applications today. The reason is that the most prof-
itable operation of the industrial plant is often obtained when the process is running at
a constraint boundary.

Consider for example ( [91]), an industrial unit in which the product is manufactured in
a unit that requires heating. The energy cost can be optimized by keeping the amount
of heat supplied as small as possible but just large enough to obtain the desired quality
of the product. The optimum is on the constraint boundary, in this case the constraint
on the quality of the product is the one to be respected.

Constraints can be present in the system to be controlled in different ways. Constraints
on inputs of the system are commonly present. Valves have a finite range of adjust-
ment, a maximum value of the flow rate in hydraulic systems is determined by pipe
diameters, etc. These constraints are saturation or rate constraints. Typical example of
rate constraints are valves and other actuators with limited opening rates. Consider for
example a semi-batch reactor (see [49, 111]) depicted in figure 1.1. A reactant enters
the reactor on the left. In the reactor, an exothermic reaction occurs (roughly speaking,
an exotherimic reaction is a chemical reaction which is characterized by development
of heat). To control the behaviour in the reactor, the temperature inside the reactor
has to be kept on (or close) to a set-point. The reactor needs cooling, otherwise the
temperature in the reactor would rise without control. The cooling is performed by



Page 8 of 155

4 Introduction

cooling water
reactant

reactor

Figure 1.1: Semi-batch reactor

a flow of water which is cooled by the heat exchanger shown on the right of figure
1.1. The reactant flow rate and the flow rate of the cooling water are controlled by
valves. These flaws can be adjusted only between certain minimum and maximum
values which are determined by minimum and maximum openings of the valves. In
other words, the dynamics of the process is subject to input constraints.

Additional constraints that are usually imposed to processes like this semi-batch reac-
tion are determined by the economic objectives. For instance, to keep the reactor at an
economically profitable operating point, to have a quick change-over of product spec-
ification, to minimize environmental damage, to minimize off-spec production time,
to minimize product variations etc. The economic objective can be to finish the batch
as quickly as possible which is usually equivalent to keeping the reactant flow as large
as possible. The amount of heat from the reaction is proportional to the reactant flow
and the ability to cool the reactor is limited by the maximal flow of the cooling water.
As a consequence, if the reactant flow is above a certain value, the dynamics of the
reaction becomes unstable, because it is not possible to provide sufficient amount of
cooling. Thus, the economic objective of having a large reactant flow needs to be com-
promised with the ability to cool the reaction. This is a typical example of difficulties
that constraints on the input impose to a control system.

In most cases, the product of an industrial process has to meet certain quality require-
ments. Quality requirements can be seen as constraints on the output of the system, in
this case the system is the industrial process. These constraints have to be respected
as much as possible i.e. violation of quality constraints can be tolerated in some
cases although it is not desirable. In this case we talk about soft constriants. Con-
straints on the output of the system can be of different origins, however. Constraints
on output are often imposed by safety or environmental considerations, in most cases
these constraints have to be respected absolutely. These constraints are known as hard
constraints. Constraints on the output mentioned so far are constraints that are not in-
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herent to the dynamics of the systems but are imposed by economical, environmental
or safety reasons.

There are many examples in which constraints naturally occur in the process dynam-
ics. As a simple example of such a system, consider an ideal diode. There are two
variables that describe behavior of the diode. These variables are electrical current
through the diode, denoted with i d and the electrical voltage across the diode, denoted
with ud . The main role of a diode in an electrical circuit is to regulate the “direction”
of the electrical current flow. When the voltage across the diode is positive, the diode
does not have any resistance and when the voltage across the diode is negative the
diode has an infinite resistance. The behavior of the diode can be described by the
following equation.

id(ud ) =
{

id = 0 if ud < 0

ud = 0 if id > 0.

The value of the current through the diode is constrained from below and this con-
straint is inherent to the behavior of the diode. An electrical network with an ideal
diode will have two modes of operation depending on the direction of the voltage
across the diode. Because of its multimode characteristic, this is an example of a
hybrid system (see [4, 22, 26, 67]).

In real world, control systems are effected with disturbances from various sources.
To control a plant in a desired manner the presence of undesired disturbances is one
of the most important objectives that a control system has to meet. In many cases
disturbances are not known exactly and they are random in nature. Mathematically,
such disturbances are described by a stochastic model. A system in which stochastic
disturbances play an important role is a problem of Aircraft Conflict Detection in Air
Traffic Management Systems (ATMS) (see [110,147]). A sketch of ATMS structure is
shown on figure 1.2. The primary concern of all ATMS is to guarantee safety. Safety
is typically quantified in terms of the number of conflicts, i.e. situations where two
aircraft come closer than a certain distance to one another. The safety distance is
encoded by means of minimum allowed horizontal separation and minimum allowed
vertical separation. This quantities are constraints that have to be respected.

One of the difficulties in predicting aircraft positions is modeling the perturbations
influencing their motion. The motion of the aircraft is affected by uncertainty, wind
force, errors in tracking, navigation and control. Since most of these effects have a
random, unpredictable behaviour, the resultant deviation from the nominal trajectory
can often be modeled by stochastic disturbance inputs.

The position of the aircraft is known exactly but the control has to be based not just
on the known position and desired flight path of the aircraft that is led by the air traffic
control but also on the prediction of the future air traffic movements. That is the only
way to guarantee that a necessary flight path correction will be scheduled in time to
the aircraft. Here, there are several important elements in the control problem. These
are: the dynamics of the aircraft, predicitons of future air traffic situation in relation
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Figure 1.2: A sketch of ATMS structure

to position of aircraft, constraints in terms of minimum safety distances and random
disturbances. The difficulty is that with the presence of the random disturbance it is
not possible to guarantee that the constraints in future will be respected absolutely.
A feasible approach is to minimize the possibility of the constraint violation in the
predicted future by an appropriate choice of the current control action. Note that this
choice has to be based on the predicted control action in future, not just on the model
of the system and the stochastic model of the disturbance.

Given the known position of the aircraft, known aerodynamical characteristics of the
aircraft and the stochastic model of the disturbance, the control strategy in this ex-
ample is to compute the flight path correction that will be ordered to the aircraft in a
finite time slot, ranging from the current time to some time in the future, so that the
possibility of the constraint violation over this time slot is minimized. The first one of
computed flight path corrections is actually ordered to the aircraft, in the next time in-
stant the procedure is repeated based on the new information about the position of the
aircraft. Conceptually, this control strategy is known as the model predictive control
technique.

Despite the overall presence of constraints in real world control problems and their
importance in today control practice there is only a few techniques available in the
literature that can be used in a design of constrained control systems. This is especially
true for systems that are subject to stochastic disturbances. Each one of the techniques
that deal with constrained systems has its own merits and drawbacks. In the following
subsections we give an overview of various available approaches to the control of
constrained systems.
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Figure 1.3: Anti-windup structure

1.2 Anti-windup designs

As examples in section 1.1 show, systems with control input constraints are often
encountered in the control engineering practice. Control systems with saturated inputs
were encountered early in the development of control engineering, when control of
dynamical systems was more a craft than a science. Anti-windup designs have roots
in early attempts of control practitioners to deal with the problems that are posed by
constrained control inputs. Essentially, in an anti-windup design we look at the control
input saturation as a change in mode in which the plant operates. For example, a linear
plant with input saturation is in its linear mode if its actuators do not saturate. When
saturation occurs, the mode of operation switches and the plant is no longer in the
linear mode. If the plant is controlled by a linear controller, the actual input to the
plant will be different from the control input set by the controller when a change in
mode occurs. As a result, the states of the controller are wrongly updated. This effect
is called controller windup. An idea implemented in an anti-windup design is that
each mode of operation has a linear controller designed to satisfy the performance
objective corresponding to that mode. In this way, controller windup is avoided. The
structure of an anti-windup design is shown on the figure 1.3. The difference u − u p

is an indication of operational mode of the plant. When u − u p is equal to zero,
the plant is in its linear mode, controlled with controller K . When the difference
u − u p becomes larger than zero it indicates that saturation has occurred and the
control structure changes so that controller K sat determines the input to the plant,
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also. For details and different anti-windup structures we refer to [79] and [6].

The main drawback of anti-windup designs is that they can be dealing only with in-
put constraints. More precisely, anti-windup designs are suitable for a specific type
of input constraints and that is actuator saturation. Actuator saturation is frequently
encountered in control engineering practice but there are also other types of input
saturation, for example actuators with rate constraints. For these, more general in-
put constraints, anti-windup designs are becoming quite complex in structure. When
the system is not saturated, the control system has linear behavior. When the input
saturates, the overall system is not linear anymore and the performance of the sys-
tem can be poor, because the design of anti-windup is aimed to preserve stability. In
short: anti-windup is suitable for the plant with saturated actuators when the system
does not saturate often. When the system does not saturate often, a linear controller
controls the plant most of the time and it determines the overall system performance.
The saturation is viewed as a rare exception and the anti-windup is designed to handle
that exceptional case. When the system saturates more often or the state of the sys-
tem is subject to constraints itself, anti-windup designs are not suitable for handling
constraints.

1.3 Control of linear systems with input constraints

In many practical applications, an important limiting factor for control is the saturation
of the actuators. That is, there is a significant discrepancy between a demand signal
u for an actuator and the signal σ(u) that is actually fed in the system. Here σ is
a function σ : R → R, usually continuous, often scaled to have σ (0) = 0. Some
examples of the saturation function are depicted on the figure 1.4. The importance of
saturated actuators in applications as well as difficulties that arise when one aims to
analyze a more general setup with general constraints on inputs and states motivated
researchers to look at the simple extension of the traditional linear, time invariant, state
space setup. This simple extension uses a vector-valued saturation function σ defined
as

σ (s) =




−
σ(s1)
−
σ(s2)

...
−
σ(sm)


 with

−
σ(s) =




s if |s| ≤ 1

−1 if s < −1

1 if s > 1.

and is in the form of the following system

ẋ = Ax + B σ(u)
y = Cx

(1.1)

where x ∈ R
n , u ∈ R

m , y ∈ R
p . This extension treats one aspect of constraints,
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u

u)σ(u)

σ(u) u)σ(

uu

u

σ(

Figure 1.4: Some examples of the saturation function

namely the saturation, and does not treat hysteresis, rate limits and other static nonlin-
earities. Analysis of the system (1.1) showed some important facts about systems that
are subject to input constraints. First results are concerned with the issue of internal
stabilization of the system (1.1). An important notion in this context is the notion of
null controllability. A state x ∈ Rn of the system (1.1) is called null controllable if it is
possible to steer the system (1.1) to the origin of the state space from the state x . The
set of all null controllable points in the state space is called a recoverable set. If the
system (1.1) is such that all states in Rn are null controllable we say that the system
(1.1) is globally asymptotically stabilizable. It has been shown in [135] that a lin-
ear continuous-time system subject to amplitude saturation is globally asymptotically
stabilizable if and only if the matrix pair (A, B) is stabilizable and all eigenvalues
of the matrix A lie in the closed left half of the complex plane. Another important
result can be found in [59] and [142] which states that, in general, a linear feedback
control law can not be used for global asymptotic stabilization of the system (1.1).
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This result initiated research where a non-linear feedback is proposed to deal with
global asymptotic stabilization of the linear system (1.1) subject to input saturation
(see for example [144] where such a design is proposed for a certain class of the linear
systems).

An other view point has been taken in [88, 89]. In these papers, instead of searching
for a controller that will achieve a global stabilization, the authors proposed a semi-
global stabilization approach. In the semi-global stabilization setting, one seeks for a
family of feedbacks u = fε(x) such that for any compact set X ⊂ R

n , there exists ε∗
such that u = fε(x) with ε < ε∗ is such that the set X is contained in the recoverable
set for the system (1.1). It is shown that, under the assumption that the system (1.1)
is globally asymptotically stabilizable, the feedback that achieve this can be chosen to
be linear and that the set X can be made arbitrary large provided that the gain of the
linear feedback is sufficiently small. A linear feedback u = f ε(x) that will achieve
semi global stabilization for the system (1.1) can be found via so called low-gain
design. The low-gain linear feedback for (1.1) is given by

u = fε(x) := −BT P(ε)x (1.2)

where P(ε) > 0 is the solution of the parameterized Riccati equation defined as

0 = AT P(ε)+ P(ε)A − P(ε)B BT P(ε)+ Q(ε)

with a continuously differentiable matrix-valued function Q : (0, 1] → R
n×m such

that Q(ε) > 0, d Q(ε)
dε > 0 for any ε ∈ (0, 1] and limε→0 Q(ε) = 0. For a given set

X, the low-gain feedback (1.2) stabilizes the system (1.1) for all states in X, with ε

small enough. When the system (1.1) is not globally asymptotically stabilizable, the
set X can not be chosen arbitrary. In general however, the size of the recoverable set
will grow as ε is getting smaller.

The main feature of the low-gain design is that the controller (1.2) avoids saturation
of the actuator and the overall system therefore remains linear. The main drawback of
the low-gain design is a slow response for large recoverable sets, because of the low
gain in the controller that is necessary when the recoverable set is large.

To cope with the drawback of a slow response a low-and-high design technique is
proposed in [90]. The low-and-high gain feedback is given by

u = −(1 + ρ)BT P(ε)x, ρ > 0. (1.3)

With the feedback (1.3) the control signal gets saturated as ρ increases thus the con-
troller takes advantage of the available input “power”. However, the overall system is
nonlinear which makes analysis more difficult, when compared with the low-gain de-
sign. For details about low-gain and low-and-high-gain design as well as for in-depth
view of the approach described in this subsection we refer to [125].
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1.4 Minimization of the maximum peak-to-peak gain:
�1 optimal control problem

The effect of constraints can be expressed in terms of time-domain bounds on the
amplitude of signals. This observation motivated a formulation of a new optimization
problem in [150], the so called �1 optimal control problem. First results (see [46–48])
brought considerable attention to the problem of � 1 optimization.

To present the �1 optimal control problem, we first introduce the �∞ norm on the space
of all real vector-valued sequences of dimension n. Suppose that x = (x(t))∞t=0 with
x(t) ∈ Rn is such a sequence. Then, its �∞ norm is defined as

‖x‖∞ = sup
t

max
i

|xi(t)| i ∈ [1, n].

and we say that x belongs to �∞ whenever ‖x‖∞ is finite. Note that for scalar valued
signals (n = 1), ‖x‖∞ expresses the maximal amplitude of the signal. This makes a
bound on this norm a natural choice when the magnitude of the signal has to be limited
because of constraints. Consider the plant given with the state space system

x(t + 1) = Ax(t) + Bu(t) + Ew(t)
y(t) = Cy x(t) + Dyu(t)
z(t) = Cz x(t) + Dzu(t)

(1.4)

where u is the control input with u(t) ∈ R
m and x is the state with x(t) ∈ R

n . The
second equation describes the measured output y with y(t) ∈ R

d . The output to be
controlled is z with z(t) ∈ Rp . The disturbance w with w ∈ Rq belongs to �∞.

In the standard �1 optimal control setup, the plant (1.4) is assumed to be controlled by
a feedback controller

u = K y. (1.5)

The controller K ∈ K is a linear, time invariant operator. Suppose that we are faced
with the problem of keeping the regulated output vector z constrained. The objective
can be expressed as a requirement on the �∞ norm of the signal z

‖z‖∞ ≤ kz. (1.6)

It can be shown that objective (1.6) can be expressed as a condition on the � 1 operator
norm.

Especially for discrete-time systems, there is a solid theory available for the design
of linear controllers that achieve (1.6) (see for example [52]). The approach taken to
solve �1 control problem is based on linear programming. Note that we give here a
simple case where only constraints on output are considered. The approach can be
extended so that the constraints on input and/or state are taken into account as well
(see [45]).
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Figure 1.5: Industrial applications of model predictive control, see [114]

A problem with the approach based on �1 operator norm is that the available methods
for solving such a problem are essentially constrained to linear controllers. When
one seeks a solution of �1 control problem among linear controllers only, the result
is a controller with a very high order in discrete-time case or a controller with an
infinite order in the continuous case. The optimal controllers for � 1 control problem
are nonlinear (see [138]). Unfortunately, there is no available theory that will teach us
how to obtain nonlinear optimal controllers for � 1 control problem in general case.

1.5 Model predictive control

The origin of model predictive control is in attempt of control engineers to provide a
control technique that is adequate for handling constraints and be able to cope with
problems raised by nonlinearities and uncertainty. Despite the lack of solid theoreti-
cal foundations of the early model predictive controllers, model predictive control has
had a significant and widespread impact on industrial process control [114]. There are
many proposals for model predictive control but all of them have common ingredients.
The first of these ingredients is the model for predicting the “future” behavior of the
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plant to be controlled. The prediciton is performed over a finite time interval start-
ing with the current time and extending to some time in the “future”, usually called
the control horizon. Next, the performance of the system over the control horizon is
accessed by computing the cost. Model predictive controller has to solve the opti-
mization problem in which it has to find an input sequence over the control horizon
so that the cost is minimized and the constraints on input and the state are respected.
In model predictive controller the optimization described above is performed at each
time step but only the first input of the obtained optimal input sequence is applied to
the plant. In the next time step, a new measurement is collected and the optimization
is repeated over the control horizon that is “shifted” for one step. This implementation
is called the receding horizon implementation.

Model predictive control framework plays an important role in the work that is pre-
sented in this thesis. More detailed overview of model predictive control is given in
chapter 2.

1.6 Goals of the thesis

In this thesis we deal with control of constrained systems that are subject to stochastic
disturbances. The main motivation for dealing with control of such systems is that
there is no method available that adequately deals with this problem, despite the fact
that stochastic, constrained systems are often encountered in real world problems.
Goals of the thesis are to

1. Formulate a mathematical problem for the synthesis of a controller that will
achieve desired performance of the controlled system. More precisely, to mini-
mize a performance measure that captures desired performance while respecting
constraints in the face of stochastic disturbances.

2. Deduce verifiable conditions under which the problem formulated in 1. is solv-
able.

3. Formulate a solution concept for the problem in 1. that is based on the model
predictive control technique.

4. Create feasible computational algorithms for the synthesis of controllers that
solve control problems from 1. within the solution setup from 3.

5. Investigate convergence properties of the approximate solutions obtained by
computational algorithms from 4.

The first goal is concerned with the fundamental basis of the work. The problem setup
has to be general enough to capture the true nature of the challenge that constraints
are posing to the control of real world dynamical systems but not too complex for a
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mathematical analysis and a synthesis of a feasible controller. The plant to be con-
trolled is assumed to be from a class of linear, time invariant systems and it is subject
to disturbances and constraints. Note that constraints are essentially making the con-
trol problem nonlinear, even when the plant is linear. Since it is our aim to derive
computational algorithms that will make possible to implement controller on some
kind of digital computational device, it is convenient to use a discrete time system as
a prototype of the plant to be controlled. Although simple, the discrete, linear, time
invariant system with a disturbance model has a wide range of applications in control
theory and practice. The model/plant mismatch and uncertainty in the knowledge of
the true plant dynamics can be viewed as disturbances that are included in the model.

In practice, the controller has to keep the plant in the desired working regime despite
the disturbances and/or mismatch between the model and the plant or to ensure that all
important variables in the process evolve according to some desired profile. Mathe-
matically, with suitable extensions and modification of the linear, time invariant model
with a disturbance model, it is possible to capture these requirements as an objective
of steering the plant to the equilibrium point. The steering has to be performed by tak-
ing into consideration various objectives like a minimum use of energy (i.e economic
objective) and required demands on the quality of product which can be viewed as
constraints on the state of the model. These demands are captured in the performance
measure that is a function of the model’s state and the input to the model. Then, a con-
troller has to be designed that will respect constraints on the state as much as possible
and that will keep the performance measure as low as possible despite constraints on
the input and disturbances, thus giving the best possible performance of the overall
system. The model, constraints on the input and the state of the model, a performance
measure and the optimization problem of designing the controller that will control
the plant optimally with respect to the performance measure are the elements of the
problem setup that is proposed in this thesis.

It is natural to design a controller that will respect constraints on the state as much as
possible. A constrained input limits ability to control the plant and disturbances are
posing additional difficulties to the control problem. It is possible that demands on
the control system are too harsh for the problem at hand and that no solution exists.
Given the system, the performance measure and the level of stochastic disturbances
it is natural to ask how well constraints on the state can be respected. To answer
this question it is necessary to derive a solvability condition within the mathematical
problem setup, which is the second goal of the thesis. With a solvability condition
it is possible to compute the limit of performance that can be achieved for the given
problem, which is necessary information when one judges how successfully a design
of the controller can be performed.

The third and fourth goals of the thesis are concerned with the solution of the opti-
mization problem from goal 1. The only feasible approach is the model predictive
control technique. The difficulty is that design methods for model predictive con-
trollers that are available in the literature are not suitable for dealing with constrained
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systems that are subject to stochastic disturbances. Therefore, it is necessary to de-
velop a new solution concept that is based on the predictive control technique but can
handle constrained systems that are subject to stochastic disturbances better than pro-
posals available in the literature. This is the third goal of this thesis. The approach
reported in the thesis is based on optimization in closed loop and the standard algo-
rithms for model predictive control that are performing optimization in open loop via
quadratic programming algorithms can not be applied. Therefore, we set the fourth
goal of the thesis to develop algorithms by which model predictive controllers based
on the solution concept from goal 3. can be implemented.

1.7 Outline of the thesis

Chapter 2. Model predictive control is the main tool used in the thesis. In chapter 2
we give an overview of available results in model predictive control. The focus in this
chapter is on two major issues: techniques that are currently used to ensure stability
of model predictive controllers and techniques by which disturbances are handled in
model predictive control schemes. The main conclusion of chapter 2 is that none of the
techniques is adequate to deal with constrained systems that are subject to stochastic
disturbances. That shows that a new approach to predictive control of such systems is
necessary and this gives a strong motivation for the work reported in this thesis.

Chapter 3. An optimal control problem for constrained systems that are subject to
stochastic disturbances is a complex problem when one considers constraints on the
input and the state together. Therefore, a better approach is to look at the simpler case
first. For the problem of optimal control of constrained systems the simpler case is
the case in which only constrained inputs are considered and all states are assumed
to be measured. Synthesis of model predictive controllers for linear systems with
constrained input and stochastic disturbances is given in chapter 3. In this chapter, we
propose a problem setup (goal 1.) that consists of a linear, time invariant, discrete time
model of the plant with a Gaussian white noise disturbance. The input is, of course,
assumed to be constrained. The performance measure is a quadratic cost function. It is
shown that the model predictive controller has to be designed in the closed loop to deal
with the constrained systems that are subject to stochastic disturbances. A solution
(goal 3.) based on the model predictive technique that deploy such an approach is
proposed in chapter 3 for linear stochastic systems with the constrained input. Since
the cost is stochastic because of the stochastic disturbance, an expectation of the cost
has to be computed recursively and the optimal feedback strategy has to be determined
in each time step in the control horizon.

The algorithm for the practical implementation of the controller developed in the chap-
ter 3 is based on the empirical mean, because a computation of the true expectation is
difficult for all but very simple systems. The solution obtained by the empirical mean
is an approximate one, and the accuracy of the solution depends on the number of
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samples taken to compute empirical mean. Convergence properties of the solution ob-
tained by the algorithm are investigated and a convergence of the result to the optimal
solution is established. At the end of the chapter, we give two numerical examples,
one of them is based on the model of an ill-conditioned plant, for which feasibility of
the approach is shown.

Chapter 4. In chapter 4 the problem setup and the solution concept based on model
predictive control is extended to the general case in which a stochastic system with
constrained input and constraints on the state is considered. As is shown in chapter 4,
it is not possible to find a solution when one aims to respect the state constraints as
hard constraints i.e. to find a controller that will ensure that constraints are respected
with probability one. Therefore, it is necessary to modify the problem setup to handle
the state constraints in addition to the constraints on the input. We modify the cost
function so that the performance of the controlled system is preserved when the state
satisfies constraints and is far away from the boundary of the state constraint set but
when the system gets close to the constraint boundary or vioaltes the constraints the
cost function penalizes a probability of the constraint violation on the first place. It is
natural to keep this probability as low as possible but because of the stochastic distur-
bance, the probability of the constraint violation can not be arbitrary small. We derive
a solvability condition (goal 2.) that shows how large a penalty on constraint violation
can be imposed with respect to the level of the Gaussian white noise disturbance be-
fore the cost function becomes unbounded. By using this result, it is possible to find
the largest possible penalty on the constraint violation, thus to keep the probability of
state constraint violation as low as possible for the problem in hand.

Because of the modifications, the cost function can not be quadratic as in the case
with only input constraints, and results from chapter 3 can not be directly applied to
the problem setup extended to handles the state constraints in addition to constraints
on input. We develop a new algorithm to find a solution within this extended problem
setup. The algorithm is based on predictive control techniques, computation of the
empirical mean and optimization in closed loop. A convergence result for the new
algorithm is derived and reported in chapter 4. Finally, we give a simulation study that
shows feasibility and benefits of the approach.

Chapter 5. The approach presented in chapters 3 and 4 is extended in chapter 5 to the
measurement feedback case. We remove the assumption that the state of the system
is available for feedback and show how algorithms from the previous chapters can
be used in the measurement feedback framework. A design is based on the use of
Kalman filter for state estimation. The optimization problem is then solved with the
cost function that uses the estimated state instead of the true state of the controlled
plant. The chapter is concluded with simulation experiments in which the algorithm
from the chapter is applied to the double integrator system.

Chapter 6. The thesis is concluded with chapter 6 where we give a summary of
contributions made in the thesis and the outline of topics for further research.



Page 21 of 155

1.7. Outline of the thesis 17

Contributions of the thesis are twofold. The first set of contributions is made with
regard to the model predictive control of constrained, stochastic systems. In this thesis,
we develop a novel approach to the model predictive control of such systems, that
is based on the optimization in closed loop over the control horizon and stochastic
sampling of the disturbance.

The second set of contributions has been made in more general framework of the
optimal control of stochastic systems that are subject to input and state constraints.
We present a novel problem setup for control of such systems and give initial results
that are concerned with solvability of the posed optimization problem.
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Model predictive control: an overview

The goal of this chapter is to give a detailed overview of model predictive control
technique. Beside the formulation of model predictive control, we focus on two im-
portant issues: available techniques for stabilizing a model predictive control scheme
and techniques for incorporating the disturbance.

2.1 A standard formulation of Model Predictive Con-
trol

Model predictive control or predictive control is a control technique in which the cur-
rent control action is obtained by minimizing a cost criterion, defined on a finite time
interval, ranging from the current time to some future time instant. The current state
of the plant is used as an initial state for the optimization and the optimization yields
an optimal control sequence from which the first element is applied to the plant. At the
next time instant the procedure is repeated. The development of this control technique
was initiated by needs and concerns of industry. Predictive control has been seen as
one of few suitable methods that are able to handle constraints. Early publications
are mainly concerned with different models for the prediction and ad hoc methods
for constraints handling. In those publications there is a number of proposals for pre-
dictive control such as IDCOM (identification and command), DMC (dynamic matrix
control), quadratic matrix control (QDMC) etc. (see [44, 60, 94, 113, 120,121] for the
development of model predictive control techniques reported in the process control
literature). The success of the model predictive control in industry has inspired inten-
sive academic research where issues like stability are addressed directly. Today, there
exists a vast literature dealing with model predictive control. Here we give a reference
to the review papers [61,84,85,96,97,113,116,121] that describe its historical devel-
opment. There exist several books dealing with different aspects of model predictive
control. An early attempt to give a sound theoretical foundation to model predictive
control without constraints can be found in the book [20]. In [134], the relationship
between different predictive control techniques has been investigated. The books [28]
and [91] give a recent overview of model predictive control techniques.

In the model predictive control literature the plant to be controlled is usually described
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in terms of a difference equation of the form:

x(t + 1) = f (x(t), u(t)) (2.1)

where x(t) ∈ Rn is the state and u(t) ∈ R
m is the input at time t , t ∈ Z+. The function

f : Rn × R
m → R

n is a continuous function with

f (0, 0) = 0.

The input u(t) ∈ Rm and the state x(t) ∈ Rn are constrained in that

u(t) ∈ U

and
x(t) ∈ X

for all time instances t , where U is a closed, convex subset of Rm and X is a closed,
convex subset of Rn with 0 ∈ U and 0 ∈ X.

Typically, the objective of a model predictive controller is to steer the initial state x
to the origin or to an equilibrium state in a desirable way. Performance is expressed
via a performance measure, usually called the cost, and a "desirable way"means that
the plant has to be controlled so that the performance measure is minimized. Other
objectives like reference trajectory tracking or transition of the system to the set point
state can be translated to the objective of steering the system state to the origin by a
suitable extension of the model or a choice of the performance measure.

The performance is computed over a finite interval T := [0, N] where N > 0 and
this interval is usually called the control horizon with length N . The performance is
calculated by means of a prediction of the state variable on the horizon T . Specifically,
the predicted state x N : {0, · · · , N + 1} → R

n is defined by the recursion according
to

xN (k + 1) = f (xN (k), vk) (2.2)

with an initial condition x N (0) := x where vk ∈ U is the input to the model (2.2)
at k ∈ T . We consider a set of input sequences v := (vk)

N
k=0 denoted as V. It is

important to observe that the predicted state x N is generated by the model (2.2) where
v is an open-loop strategy, i.e. a strategy that only depends on time, not on other
measured variables.

Conceptually, at time t the initial condition x N (0) in (2.2) is set as x N (0) = x(t)
where x(t) is the measured state of the system (2.1) at time t . The predicted state
at k, xN (k), is prediction of the state x(t + k) and the input vk is the "future" input
u(t + k). Note however that the model (2.2) is time invariant. Therefore, the current
time can be set to zero, without loss of generality. Variables involved in the design of
a predictive controller can be defined as functions of k, k ∈ T rather than the functions
of the current time.
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Next, consider the cost J : Rn × V → R:

J (x, v) =
∑
k∈T

g(xN (k), vk)+ G
(
xN (N + 1)

)
x ∈ Rn (2.3)

subject to xN (0) = x = x(t). The function g : Rn × R
m → R+ is a convex and

nonnegative function with g(0, 0) = 0. Also G : Rn → R, G(0) = 0 is convex,
nonnegative and referred to as the end point penalty.

This typical model predictive setup is depicted on figure 2.1. The optimization prob-

Nx   (k)

vk

control horizon

0 1 2 3 k N

current time

N + 1

predictionpast

x measured state

input

predicted state

Figure 2.1: Optimization setup in model predictive control

lem to be solved by a predictive controller is given next.

Problem 2.1.1 Suppose that, at time t , the measured state is x . Find an optimal input
v∗ ∈ V such that

J (x, v∗) ≤ J (x, v) (2.4)

for all v ∈ V. In addition determine the optimal cost given by:

V (x) := inf
v∈V

J (x, v).

If problem 2.1.1 admits a solution, it yields an optimal input v ∗ = (
v∗k
)N

k=0 ∈ V that
depends on the current state x . Only the input v ∗

0 is applied to the plant i.e. we set

u(t) = v∗0
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as the input (2.1) at time t . By (2.1) this yields the next state x(t +1). At the next time
instant t + 1, the optimization problem 2.1.1 is solved for the new state x(t + 1). This
on-line computation of the optimal input is called a receding horizon optimization.
We can say that the optimization problem 2.1.1, implemented in a receding horizon
manner, when ranging over all possible conditions x ∈ R

n , implicitly defines a time
invariant model predictive control law that associates with the measured state x the
input v∗0 . That is, it defines a map η : Rn → U as

η(x) = v∗0 . (2.5)

The optimal cost is given by
V (x) = J (x, v∗). (2.6)

When the model predictive controller (2.5) is applied to the plant (2.1), the closed loop
system is

x(t + 1) = f
(
x(t), η(x(t))

)
. (2.7)

Typically, the optimization problem 2.1.1 is solved numerically. In the context of
numerical optimization, an important requirement is convexity of the optimization
problem. The optimization problem 2.1.1 is convex if the cost function (2.3) is convex
and sets U and X are convex. A convex function has only global minima and standard
algorithms exist for minimization of convex functions (see [58, 107, 122] for general
introduction to convex optimization and [24] for convex optimization in control).

There are several types of cost functions that can be found in the model predictive
control literature. A much used criterion is a quadratic cost where the function g is
chosen as:

g(x, u) = ‖x‖2
Q + ‖u‖2

R x ∈ R
n , u ∈ R

m (2.8)

where ‖x‖2
Q := 〈x, Qx〉, Q ∈ R

n×n and ‖u‖2
R = 〈u, Ru〉, R ∈ Rm×m , Q ≥ 0,

R ≥ 0. Matrices Q and R are known as the weighting matrices. With the quadratic
cost, polyhedral set V and the plant (2.1) defined as the linear, time invariant system

f (x(t), u(t)) = Ax(t)+ Bu(t), A ∈ R
n×n and B ∈ Rm×m (2.9)

the optimization problem 2.1.1 can be rewritten as a quadratic programming problem
(see example 2.1). There exist standard algorithms for solving a quadratic program-
ming problem (see [23, 149] for example). The quadratic programming problem is a
convex optimization problem. This feature makes this formulation of model predic-
tive control very attractive from the implementation point of view and a large portion
of the model predictive control literature is devoted to this special case.

Another example that can be found in literature is the case where the �∞ norm is used
in the cost function (see [30] where �∞ norm in the cost is proposed in the disturbance
rejection context). In its simplest form the function g is chosen as:

g(x) = ‖x‖∞ x ∈ Rn (2.10)
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where ‖x‖∞ denotes �∞ norm of x defined as ‖x‖∞ := max i |x i |. The cost with
(2.10) minimizes the error between the state and the origin (equilibrium state) mea-
sured in the sense of the amplitude of x . The control effort is not taken into account
in the cost (2.10) which may result in a type of so called "bang - bang" control where
the input is "switching" very quickly between its constraint boundaries. This prob-
lem is usually handled by introducing additional weight on the control input. When
the model is linear and the cost is based on the infinity norm the solution of the op-
timization problem 2.1.1 can be found by a linear programming algorithm. Linear
programming is a standard and well documented optimization technique.

In [1] the �1 norm in the cost function (2.3) has been proposed. The function g is then
chosen as:

g(x, u) = ‖x‖1 + λ‖u‖1 (2.11)

where

‖x‖1 :=
n∑

i=1

∣∣xi
∣∣

denotes �1 norm of a vector x . The optimization problem with the cost in which g
is chosen to be (2.11) can be solved as a linear program. In the literature, it is of-
ten claimed that a main reason for adopting a model predictive control formulation
based on the linear programming is that linear programming problems can be solved
more quickly than quadratic programming problems. With the available computa-
tional power today, the issue of difference in the computational load between linear
and quadratic programs is no longer relevant. Nevertheless, the quadratic cost (2.8)
that allows to solve the optimization problem 2.1.1 as a quadratic program is used in
the most applications.

Example 2.1 To illustrate a standard approach to model predictive control, we con-
sider the problem of steering a cart to a prescribed position. The cart is shown in figure
2.2 where s(t) denotes its position from some set point at time t . The objective is to
steer the cart from an initial position s(0) = 10 where the cart is at rest, to the set
point s(K ) = 0 in finite time K by applying some force u to the cart. The constraint
to be respected is:

s(t) ≥ 0.

In addition, we assume that the input force u(t) is constrained. The constraints on
input are given by:

−u0 < u(t) < u0

where u0 > 0.

To simplify the exposition, we assume that all involved dimensions are normalized.
The differential equation that describes the motion of the cart is given by

d2s

dt2 = u. (2.12)
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Figure 2.2: Steering the cart

A discrete time, state space representation of (2.12) obtained with the unit sample time
and with the input assumed to be constant between the samples is given by

x(k + 1) = Ax(k)+ Bu(k)
s(k) = (

0 1
)

x(k)
(2.13)

where

A =
(

1 0
1 1

)
B =

(
1
0

)
.

We design a model predictive controller for the cart, based on the model (2.13) and
the following specifications.

• The length of the control horizon is N = 4.

• The cost function is quadratic. The function g is chosen as (2.8) with

Q =
(

0.7 0
0 0.7

)
R = 1.

• The end point penalty is chosen as:

G(x) = ‖x‖2
Qend

where ‖x‖2
Qend

:= 〈x, Qend x〉 with

Qend =
(

1.6 0.9
0.9 1.33

)
.

Given a state x and an input v, the predicted state x N can be computed as:

xN = Fx + Hv

with
F = col

(
A0 A A2 A3 A4

)
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Figure 2.3: Cart is controlled by standard model predictive controller

and

H =




0 0 0 0
B 0 0 0

AB B 0 0
A2 B AB B 0
A3 B A2 B AB B


 .

Then, the cost (2.3) can be written in a compact form as:

J (x, v) = vT �v + 2x T Xuv + x T (Y + Q)x (2.14)

with:
� = H T Q̄H + R̄ Xu = FT Q̄ H Y = FT Q̄F

Q̄ =




Q 0 0 0 0
0 Q 0 0 0
0 0 Q 0 0
0 0 0 Q 0
0 0 0 0 Qend


 R̄ =




R 0 0 0 0
0 R 0 0 0
0 0 R 0 0
0 0 0 R 0
0 0 0 0 R


 .

Problem 2.1.1 with cost (2.14) can be solved as a standard quadratic program. At each
time t ∈ Z+ we solve the optimization problem 2.1.1 with cost (2.14) and with a state
of the plant at t as an initial condition. In this way, the controller (2.5) for the cart is
implemented in a receding horizon fashion.

We test the design by simulations for different values of input constraint u 0. Results of
the simulations are shown in figure 2.3. For u 0 = 1 and u0 = 0.5 the controller is able
to steer the cart to the origin while respecting constraints on input and the state. Note
that as the amount of input force that can be applied is getting smaller the response
of the system is getting slower. With the input constraint u 0 = 0.2, the maximum
amount of the input force is not large enough to slow down the cart to the rest in only
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4 time steps from the moment when the constraint violation is predicted by the model
predictive controller. Therefore, at k = 14 a constraint violation occurs. Simulation
stops because it is not possible to find an input sequence that minimizes (2.14) without
violating the constraints. This is known as the "infeasibility". •
This example points out an often encountered difficulty with the optimization prob-
lem 2.1.1. When constraints are "hard" i.e. no constraint violation is allowed, it is
possible that for some of the initial states no solution exists. Evidently, this is not a
desirable outcome. The methodology that is often used to avoid this problem is so
called constraint "softening" (see [50, 58, 131]).

Essentially, the softening of constraints is performed by adding new variables, so
called “slack variables”, to the optimization problem 2.1.1 which are defined in such
a way that they are non-zero only if the constraints are violated. The cost function
(2.3) is then modified so that the value of the “slack variables” is heavily penalized. In
that way, the value of the “slack variables” will be kept as small as possible, therewith
respecting the constraints as much as possible.

An intrinsic feature of the optimization problem 2.1.1 is that the optimization over the
control horizon is performed in open loop. On the other hand, the model predictive
controller (2.5) is a feedback controller. Therefore, there is a discrepancy between the
assumption of an open loop control that is used in the prediction model (2.2) and the
actual control of the plant which is in closed loop. Instead of determining “off line” an
optimal control law, in model predictive control the optimal control problem is solved
“on line” for the current state of the plant.

2.2 Stability issues in model predictive control

It is well known that under the assumptions of stabilizability and detectability a stan-
dard linear quadratic, infinite horizon optimal control problem yields an optimal con-
troller that is also stabilizing (see [148] for a recent exposition). A model predictive
controller (2.5), that solves a finite horizon optimization problem 2.1.1 is not neces-
sarily stabilizing even if the cost function (2.3) is quadratic and the model (2.2) is
linear.

In the industrial practice, the issue of stability of model predictive controllers is ad-
dressed mainly in an “ad hoc” manner. The closed loop stability is achieved by tuning
the parameters involved in the design (the length of the control horizon, the choice
of weighting matrices etc.). Experience gained over years has been collected in “tun-
ing rules” which serve as a guideline for tuning the model predictive controller. On
the other hand, academic research has addressed the stability of the predictive con-
troller, leading to more comprehensive results. There are two basic modifications of
the original model predictive control formulation that have been proposed to yield a
stabilizing model predictive controller. The first one is to add an end point penalty
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at the end of the control horizon. This is one of the earliest modifications proposed
(see [20, 97, 117]) and today it becomes a standard ingredient of the model predictive
control. The second proposal that can be found in the literature is to constrain the state
at the end of the control horizon in the terminal constraint set (see [37, 100, 130]).

Conceptually, the end point penalty will increase the cost if the state at the end of the
control horizon is not in the origin. Depending on the “shape” of the end point penalty
we can make the weight on the end point state arbitrary large. For example, consider
the end point penalty of the form:

G(x) =
{

0 if x = 0

∞ if x �= 0.
(2.15)

The cost (2.3) with the end point penalty (2.15) is finite only if the end point state is
in the origin. If there exists a controller (2.5) that solves the optimization problem
2.1.1 with the cost function (2.3) that contains the end point penalty (2.15) then, this
controller is also stabilizing for the system (2.1), under some mild conditions. Having
an infinite end point penalty is not desirable in practice, because it often leads to
undesirable transient behavior. Typically, the end point is chosen to be a quadratic
function of the state:

G(x) = ‖x‖2
Qend

(2.16)

where ‖x‖2
Qend

:= 〈x, Qendx〉 with Qend ≥ 0, called the end-point “weight”. By
varying the weight Qend one can try to “tune” the controller (2.5) so that closed loop
stability is achieved (by “increasing the weight”) or to improve a transient behavior
(by “decreasing the weight”). In this context, an interesting problem that is posed
in [141, 158] is to investigate the stability properties of the controlled system as a
function of the end point penalty.

The second proposal that can be found in literature is to constrain the state at the end of
the control horizon in the terminal constraint set (see [37,100,130]). The requirement
that is added to the model predictive cost (2.3) is

xN (N + 1) ∈ Xc (2.17)

where Xc denotes the terminal constraint set and N is the length of the control horizon.
Usually, the terminal constraint set satisfies the following assumption.

Assumption 2.2.1 The terminal constraint set is a subset of X (Xc ⊂ X), it is closed
and contains the origin in its interior (0 ∈ int Xc).

Inside the terminal constraint set Xc a local stabilizing controller

u = ηc(x) u ∈ Rm x ∈ R
n

is applied. Features that are usually required from the local stabilizing controller are
listed in the following assumptions.
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Assumption 2.2.2 A local stabilizing controller ηc satisfies the input constraint in the
terminal constraint set, i.e.:

ηc(x) ∈ U for all x ∈ Xc.

Assumption 2.2.3 The terminal constraint set Xc is controlled invariant under the
controller ηc i.e.:

f (x, ηc(x)) ∈ Xc for all x ∈ Xc.

The stability analysis of the model predictive control with terminal constraint set is
based on the observation that under certain conditions the optimal cost (2.6) can be
seen as a Lyapunov function for the controlled system (2.7). A survey of stability
analysis methods for model predictive control can be found in the paper [97] (see
also [95].)

Lyapunov functions are used to investigate the stability properties of the autonomous
differential equations. Consider the system (2.1) controlled by controller (2.5):

x(t + 1) = f (x(t), η(x(t))). (2.18)

The system (2.18) is autonomous system with the origin as an equilibrium point. Next,
we give a definition of the Lyapunov function (see [132]).

Definition 2.2.4 Consider the autonomous system (2.18). A function W : R n → R

is called a Lyapunov function for the system (2.18) in a neighborhood M(x ∗) ⊂ Rn

of an equilibrium point x ∗ if

1. W is continuous at x ∗.

2. W attains a strong local minimum at x ∗, i.e. there exists a function α : R+ →
R+ which is continuous, strictly increasing, with α(0) = 0, such that

W (x)− W (x∗) ≥ α(‖x − x∗‖)
for all x ∈ M(x∗).

3. W is monotone non-increasing along all solutions of (2.18) with x(0) ∈ M(x ∗)
i.e.

W
(

f (x, η(x))
) ≤ W (x)

for all x ∈ R
n along solutions of (2.18) with x(0) ∈ M(x ∗).

If the system (2.18) is such that it is possible to find a Lyapunov function W in a
neighborhood M(x ∗) of an equilibrium point x ∗ then the equilibrium point x ∗ is a
stable point. If W is strictly decreasing along solutions of (2.18) with x(0) ∈ M(x ∗)
then x∗ is an asymptotically stable equilibrium point.
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It is easy to see that the optimal cost V (2.6) satisfies condition (1) from definition
2.2.4 at the origin. Condition (2) is satisfied at the origin because the optimal cost
V is a convex function in x with V (0) = 0. It remains to be shown that the closed
loop optimal cost V satisfies condition (3). To show this, we need additional assump-
tions on the end point penalty function G. Note that an asymptotic stability proof
requires a strict inequality in condition (3). For additional assumptions on the end
point penalty function G that are necessary for asymptotic stability, as well as for an
in-depth overview of stability issues in model predictive control we refer to the pa-
pers [95, 97]. Here, we would like to present main ideas in stability proofs for model
predictive control that utilize Lyapunov stability theory and in order to avoid technical
details we consider only stability. To show this, we need the following assumption on
the end point penalty function G.

Assumption 2.2.5 The end point penalty function G is a local Lyapunov function in
the terminal constraint set i.e. it satisfies conditions (1) and (2) from definition 2.2.4
at origin as equilibrium point and G is monotone non-increasing along all solutions of
(2.18) for all initial conditions x(0) ∈ int Xc.

Moreover, the end point penalty function G bounds the infinite horizon cost i.e for all
x(0) ∈ int Xc

G(x(0)) ≥
∞∑

k=0

g
(
x(k), ηc(x(k))

)
where the state x is defined with the recursion

x(k + 1) = f (x(k), ηc(x(k))

for k = 0, 1, . . . .

The stability result is given in the following theorem.

Theorem 2.2.6 Consider the system (2.1) and the cost function (2.3) with an addi-
tional requirement (2.17). Assume that the system (2.1) is controlled with the model
predictive controller (2.5). Moreover, assume that a set of initial conditions for which
the optimization problem 2.1.1 is solvable is not empty and denote that set by X 0.
Then, under assumptions 2.2.1, 2.2.2, 2.2.3 and 2.2.5 the closed loop system (2.18) is
a stable system for all x(0) ∈ X0.

Proof: In order to prove the theorem, we have to show that the optimal cost V is
a Lyapunov function for the system (2.18). Since the conditions (1) and (2) from the
definition 2.2.4 are trivially satisfied, it remains to be shown that V satisfies condition
(3) i.e.

V
(

f (x, η(x))
) ≤ V (x) x ∈ R

n
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along all solutions of (2.18) with x(0) ∈ X0. To show that, suppose that for a given
x(0) ∈ X0 we obtain the state trajectory x of the system (2.18). On the state trajectory
x , consider the state x(t) at time t ∈ Z+.

With v∗ = (v∗i )N
i=0 we denote an input sequence that solves the optimization prob-

lem (2.1.1) with x N (0) = x(t). The optimal predicted state is denoted with x N =
(xN (i))N+1

i=0 . The predicted state x N is obtained by solving recursion (2.1) with x(t)
as the initial state and the input sequence v∗.

At time t the input η(x(t)) = v∗0 is applied to the plant and the state in the next time
instant t + 1 is determined by (2.1). The model predictive optimization problem 2.1.1
has to be solved again, with the new initial state x(t + 1).

Instead of an optimal input over the control horizon that will result in the optimal cost
V (x(t + 1)) we will construct a feasible input sequence over the control horizon and
denote it with ṽ. By a feasible input sequence we mean that the input ṽ = (ṽ i )

N
i=0

respects the constraint on input i.e.

ṽi ∈ U for all i ∈ T (2.19)

and that the state trajectory x̃ N predicted with the model (2.2), an initial state x̃ N (0) =
x(t + 1) and the input ṽ respects the constraint on the state:

x̃N (i) ∈ X for all i ∈ T . (2.20)

Also, the state x̃N (N + 1) has to be in the terminal constraint set:

x̃N (N + 1) ∈ Xc

for the input ṽ to be feasible. Note that the cost J (x(t + 1), ṽ) is an upper bound for
the optimal cost V (x(t + 1)) since the input sequence ṽ is suboptimal.

To obtain the feasible input sequence ṽ we first note that x(t + 1) = x N (1) and that
xN (N + 1) ∈ Xc. Because of that a choice

ṽ = (
(v∗i )N

i=1ṽN
)
, ṽN = ηc(x̃N (N))

results in x̃N (i) = xN (i + 1), i = 0, · · · , N − 1 and x̃ N (N) ∈ Xc. Assumptions 2.2.2
and 2.2.3 ensure that with

ṽN = ηc(x̃N (N))

it is satisfied that
ṽN ∈ U and x̃N (N + 1) ∈ Xc

i.e. ṽ is a feasible input sequence for the optimization problem 2.1.1.

Now, we can write:

J (x(t + 1), ṽ) = V (x(t))− g(x(t), η(x(t))− G(x̃N (N))

+ G(x̃N (N + 1))+ g(x̃N (N), η(x̃N (N))
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As a consequence of assumption 2.2.5

−G(x̃N (N)) + G(x̃N (N + 1))+ g(x̃N (N), η(x̃N (N)) ≤ 0

thus
J (x(t + 1), ṽ) ≤ V (x(t))

which together with
V (x(t + 1)) ≤ J (x(t + 1), ṽ)

gives
V (x(t + 1)) ≤ V (x(t)) (2.21)

By repeating the argument in the proof it is easy to show that (2.21) is satisfied for all
t ∈ Z+.

As a typical example to illustrate the stability result in theorem 2.2.6 consider the
linear system (see [143])

f (x, u) = Ax + Bu x ∈ R
n u ∈ Rm

and the cost function (2.3) with

g(x, u) = ‖x‖2
Q + ‖u‖2

R .

The end point function G is chosen to be a quadratic function of the state (2.16) with
the end point weighting matrix

Qend = P

where P is the unique non negative solution to the following matrix Riccati equation

P = AT P A + Q − AT P B(R + BT P B)−1 BT P A.

Let the controller ηc be the optimal controller for the unconstrained, infinite horizon
optimal control problem i.e. standard LQ problem. That is, η c(x) = Fx where

F = −(R + BT P B)−1 BT P A. (2.22)

It can be easily verified that this end point penalty function satisfies assumption 2.2.5
so by a straightforward application of the result in theorem 2.2.6 the closed loop sta-
bility of this model predictive control scheme can be verified. In this way, the standard
model predictive control problem can be seen as the infinite horizon LQ control prob-
lem for the system with the constraints on the input and the state.

There are two problems that arise in the application of theorem 2.2.6 and other stability
proofs that are based on Lyapunv stability theory. The first one is the characterization
of the controlled invariant set Xc when constraints are present. This characterization
depends on the class from which a local stabilizing controller η c(x) has been chosen.
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In general, a controlled invariant set may not admit linear controllers. We refer to the
survey paper [21] which deals with the issue of set invariance in control.

Another issue that is usually not addressed in the model predictive control literature
is the characterization of the set of feasible initial conditions X0. The problem 2.1.1
is solvable only for those initial states in X for which it is possible to find an input v
that will steer the state to the terminal constraint set Xc while respecting constraints
on input and/or states.

In general, the set of feasible initial conditions X0 is a subset of the recoverable set
of the system (2.1). To define the recoverable set, assume that the system (2.1) is
controlled by a static feedback controller i.e. at each time t , the input u(t) is a function
of the state x(t). Precisely, a feasibile state feedback controller is a function ϕ ∈ �

where � is the set of continuous maps ϕ : Rn × Z+ → U that map the origin of the
state space into the zero input i.e.

ϕ (0, t) = 0 for all t ∈ Z+.

Suppose that at time t = 0 system (2.1) has an initial state x(0) = x 0, x0 ∈ R
n .

Starting at time t = 0, the state x and the output y are generated by (2.1) with the
input:

u = (
ϕ (x(t), t)

)∞
t=0 (2.23)

with the initial condition x(0) = x0 and with ϕ ∈ � .

It is well known, that a constrained input limits our ability to control the linear plant.
Suppose that the state x is generated by (2.1) with input (2.23) and with an initial state
x(0) = x0, x0 ∈ Rn . If there exists a controller ϕ ∈ � such that:

x(t) → 0 as t → ∞
we say that the state x0 is a null controllable point in the state space. All null con-
trollable points define a set in the state space which is known as the recoverable set,
here denoted as X. In general, the recoverable set is a subset of the state space. If the
recoverable set contains all points in the state space we say that the system (2.1) is
globally asymptotically stabilizable. Obviously, global asymptotic stability is a very
desirable property. Unfortunately, it can be achieved only for a very restricted class of
systems (see [125] for details).

2.3 Model predictive control and disturbances

It is often claimed that disturbances and model uncertainties are the essential reason
for using feedback control of dynamical systems. A control system is often judged by
its ability to reject disturbances and to control the plant in a prescribed manner, despite
the plant/model mismatch. Model predictive control uses a predicted behavior of the
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plant to determine the control input to the plant. In the case that the disturbances are
known and measured, it is easy to extend the model of the plant with the disturbance
model and to use the extended model in the prediction. Therefore, dealing with known
and measured disturbances is not difficult and we will not discuss this issue further.
When the disturbance is unknown, the standard model predictive controller is faced
with a difficulty. It is based on the prediction of the future behavior of the plant and
it is necessary to make assumptions about the disturbance in the prediction. If these
assumptions are too far from the real nature of the disturbance, closed loop perfor-
mance can be poor with likely violations of the constraints (see [116]). In general, we
would like to take advantage of any information that we have about the disturbance.
An example that is very often encountered in the literature is the example with an
unknown but bounded disturbance where bounds on the “magnitude” of the distur-
bance are available information and there are various proposals how to include this
information in the prediction.

In this section, we will assume that the plant is described in terms of a difference
equation of the form

x(t + 1) = f (x(t), u(t),w(t)) (2.24)

where x(t) ∈ X ⊂ R
n is the state and u(t) ∈ U ⊂ R

m is the input. The disturbance w

is an unknown disturbance with w(k) ∈ W ⊂ R
l . The function f : Rn ×R

m ×R
l →

R
n is a continuous function with

f (0, 0, 0) = 0.

Typically, to include the disturbance in the prediction, the prediction model is extended
in the following way:

xN (k + 1) = f (xN (k), vk, wN (k)) (2.25)

where xN (k) and vk are defined in a same way as in the model (2.2) and w N : T → W
denotes the disturbance on the horizon T . An obvious approach to model predictive
control of the system (2.24) is to ignore the disturbance and to design a model predic-
tive controller as described in section 2.1. The resulting model predictive control law
(2.5) ignores the effects of possible future changes in disturbance and closed loop per-
formance can be poor when disturbances are neglected in the design of the controller.
The presence of constraints makes the problem more complicated. By ignoring the
disturbance it is not possible to predict the constraint violation caused by it, therefore
the resulting model predictive controller will likely cause violations of the constraints.
Another issue is the issue of the closed loop stability. With the disturbance acting on
the plant assumption 2.2.3 no longer applies so that the stability result from Theorem
2.2.6 can not be applied to the plant (2.24) controlled by model predictive controller
(2.5), i.e. the closed loop stability can not be guaranteed.

First attempts to deal with problems that unknown but bounded disturbances are pos-
ing in model predictive control paradigm can be found in [35, 100] and from the ro-
bustness point of view in [92]. The approach that is used is commonly known as the
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min-max optimization. The main feature of this approach is that the optimization over
the control horizon is performed with an assumption that the disturbance over the con-
trol horizon is the worst possible in the sense that it maximizes the cost. The results
reported in the literature can be distinguished by the nature of the optimization over
the control horizon. We will make an overview of the approaches in the following two
subsections.

2.3.1 Min-max optimization in open loop

One way of dealing with the unknown but bounded disturbance w is to design a con-
troller that perform well for all possible realization of the disturbance. It is assumed
that the model (2.25) is subject to the disturbance wN : T → W on the horizon T .
We denote the set of all disturbances wN as WN i.e. wN ∈ WN . The predicted state
(xN (k))N+1

k=0 is generated by (2.25), with an initial condition x N (0) := x , with the
disturbance wN (k) = w(t + k), k ∈ T and the input v = (vk)

N
k=0 ∈ V. Note that the

predicted state xN is a function of the disturbance wN and the input v.

For a disturbance wN and the input v = (vk)
N
k=0 the cost acquired is given by

J (x, v,wN ) =
∑
k∈T

g(xN (k), vk)+ G(xN (N + 1)) x ∈ R (2.26)

with the initial state xN (0) = x . For fixed x and v, each one of the disturbances in
WN gives a different predicted state trajectory and hence a different cost J (x, v,w N ).
The maximal cost is defined by

Jmax(x, v) := max
wN ∈WN

J (x, v,wN ) (2.27)

The optimization problem that is posed in this setting is the problem of minimiza-
tion of the maximal cost (2.27), so called min-max optimization. We formalize the
optimization problem next.

Problem 2.3.1 Given the measured state x at time t , find an optimal input v � ∈ V
such that

Jmax(x, v
�) ≤ Jmax(x, v) (2.28)

for all v ∈ V.

If problem 2.3.1 admits a solution, it yields an optimal input v � = (v�k)
N
k=0 that de-

pends on the current state x . At time t , only the input v �
0 is applied to the plant (2.25)

i.e.
u(t) = v�0. (2.29)

This input is fed in (2.25) to result in the next state x(t+1). In the next time instant, the
optimization problem 2.3.1 is solved for the state x(t + 1), according to the receding
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horizon paradigm. In this way, the optimization problem 2.3.1 implicitly defines a
time invariant model predictive control law µ : Rn → U such that for a given x ∈ Rn

µ(x) = v�0. (2.30)

The optimal cost is given by

Vmin-max(x) = Jmax(x, v
�). (2.31)

Stability results reported in the literature constrain the state at the end of the horizon
in the terminal constraint set, leading to the results similar to the one in theorem 2.2.6.
The theorem 2.2.6 can not be applied directly to conclude on the stability of the closed
loop system

x(k + 1) = f (x(k), µ(x),w(k)). (2.32)

The problem arises when one seeks for a feasible input sequence (2.19). A choice
(2.20) does not ensure that the condition 2.2.5 is satisfied when the disturbance is
present and therefore it is not possible to conclude on the closed loop stability of the
overall system (2.32). There are different modifications of the optimization problem
2.3.1 and the conditions 2.2.1, 2.2.2, 2.2.3 and 2.2.5 that are proposed in the literature
(see for example [8, 100]) to recover the closed loop stability.

The essential problem with the model predictive controllers described in this section is
the open loop nature of the optimization problem 2.3.1. In the problem 2.3.1 we seek
for a single input v� over all possible disturbance realizations and we do not include
the feedback that is present in the receding horizon implementation. Because of this,
the predicted and true behavior of the plant differ significantly when the disturbance
is present which results in poor disturbance rejection and "conservative" control with
respect to constraints (i.e. constraints are respected but the "steady" state of the con-
trolled system is not close to the constraint boundary).

2.3.2 Min-max optimization in closed loop

A modification of the optimization problem described in subsection 2.3.1 is proposed
in [129]. The optimization is based on the min-max paradigm but the control over the
control horizon is assumed to be in closed loop. In this section we briefly outline this
approach.

The main difference between model predictive schemes with the optimization in open
loop (section 2.1 and subsection 2.3.1) and the model predictive scheme described in
this section is in the type of controller of the plant over the control horizon. While in
open loop formulations we assume input v : T → U, here we define a set of feedback
control laws � where π ∈ � is a vector (πk)

N
k=0 such that for any k ∈ T , the map

πk : Rn → U is continuous. A feedback controller on T is therefore a sequence of
continuous maps πk : Rn → U, defining the control action as a feedback at all k ∈ T .
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As in section 2.3.1, it is assumed that the model (2.25) is subject to the disturbance
wN : T → W. The predicted state (x N (k))N+1

k=0 is generated by (2.25), with an
initial condition x N (0) := x(t), with the disturbance wN (k) = w(t + k) and the input
vk = πk(xN (k)). The predicted state x N is a function of the measured state x(t), the
feedback control laws in the vector π and the disturbance w.

With a disturbance wN and the input π = (πk)
N
k=0 the cost acquired with the predicted

state xN is given by:

J fb(x, π,wN ) =
∑
k∈T

g(xN (k), πk)+ G(xN (N + 1)) x ∈ R (2.33)

with xN (0) = x and xN (N + 1) ∈ Xc. Each one of the disturbances in W N gives
a different predicted state trajectory and hence a different cost (2.33). The cost to be
minimized over all π ∈ � is defined by

J fb
max(x, π) := max

wN ∈WN

J fb(x, π,wN ). (2.34)

The optimization problem that is posed in this setting is the problem of minimization
of the maximal cost (2.34), so called min-max optimization. We define the optimiza-
tion problem next.

Problem 2.3.2 Given the initial state x ∈ R, find an optimal feedback π � ∈ � such
that

J fb
max(x, π

�) ≤ J fb
max(x, π) (2.35)

for all π ∈ �.

The optimal cost is given by

V fb
min-max(x) = J fb

max(x, π
�). (2.36)

Problem 2.3.2 is an infinite dimensional optimization problem. Practical implemen-
tation of the controller appears possible only in an approximate sense, through quan-
tization of the disturbance. However, due to linearity of the process and convexity of
the constraints and cost, this problem can be resolved. It is shown in [129] that if W is
a polytope in Rl it is sufficient to consider the disturbance realizations that take values
at the vertices of W in order to find an optimal feedback π �.

An interesting issue is the relationship between the optimal costs (2.31) and (2.36). In
the following theorem we show that by the optimization in open loop one can achieve
the performance that is at most as the performance in the closed loop.

Theorem 2.3.3 Consider the min-max optimization problem in open loop 2.3.1 and
the min-max optimization problem in closed loop 2.3.2. If optimal costs V min-max
(2.31) and V fb

min-max (2.36) exist then

Vmin-max(x) ≥ V fb
min-max(x)
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for all x ∈ R.

Proof: Suppose that for a given x ∈ R solution to the optimization problems 2.3.1
and 2.3.2 exist. The optimal cost for the optimization problem 2.3.1 is given by

Vmin-max(x) = Jmax(x, v
�)

where v� ∈ V is the input that solves the optimization problem 2.3.1. Next, choose
πk : Rn → U as πk(x) = v�k for all k ∈ T . In this way we form a sequence of the
feedback maps π = (πk)

N
k=0 ∈ �. By construction

Jmax(x, v
�) = J fb

max(x, π).

Because π is a suboptimal feedback for the optimization problem 2.3.2

J fb
max(x, π) ≥ V fb

min-max(x)

where V fb
min-max(x) is the optimal cost for the optimization problem 2.3.2. Therefore

Vmin-max(x) ≥ V fb
min-max(x).

In the next example we compare two model predictive controllers, one of them is
based on the min-max optimization in open loop (section 2.3.1) and the second one is
based on the optimization in closed loop (section 2.3.2).

Example 2.2 In this example we consider the problem of the steering of a cart (figure
2.2) to a prescribed position, as in example 2.1. Here we assume that the disturbance
w ∈ R is acting on the cart. The disturbance is an additional periodic force in the
same direction as the input force. As in the example 2.1 the objective is to steer the
cart from an initial position s(0) = 10 to the position s(K ) = 0 in a finite time K with
the constraint

s(t) ≥ 0

for all t ∈ R. The input is constrained with

−0.5 < u(t) < 0.5.

for all t ∈ R. The differential equation that describes the motion of the cart with the
disturbance is given by

d2s

dt
= u + w.

As in example 2.1, the system is sampled with the unit sample time so as to obtain a
discrete time, state space representation given by

x(t + 1) = Ax(t)+ Bu(t)+ Ew(t)
s(t) = (

0 1
)

x(t)
(2.37)
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Figure 2.4: Standard model predictive controller

where:

A =
(

1 0
1 1

)
B =

(
1
0

)
E =

(
1
0

)
.

Suppose that the disturbance is periodic and given by

w(t) = 0.4 sin (t) .

Obviously, the disturbance is bounded by its amplitude, i.e.

−0.4 ≤ w(t) ≤ 0.4 for all t ∈ R. (2.38)

We will assume that the only available information about the disturbance is its ampli-
tude as defined by (2.38). The straightforward approach would be to ignore the distur-
bance in the prediction and to design the controller as in example 2.1. This approach
does not give satisfactory results in the presence of the disturbance w. When the cart
is close to the constraint boundary (i.e. close to s = 0) the disturbance “pushes” the
cart over the constraint boundary. Results of the simulation are shown in figure 2.4.
At t = 13 the cart is in the region s ≤ 0 because of the disturbance which is not taken
into account by the controller. The control design stops because of infeasibility.

Next, we compare two predictive controllers described in this section. The first one
is based on the optimization in open loop (subsection 2.3.1) and the second one is
based on the optimization in closed loop (subsection 2.3.2). It can be observed from
the results of the simulation shown in figure 2.5, that the controller based on the min-
max optimization in closed loop controls the plant closer to the constraint and rejects
the disturbance better. The price of the improvement is in added computational com-
plexity. The total number of inputs computed at each time step is 16 (2 4) with the
min-max optimization in closed loop while the min-max optimization in open loop
requires only 4. •
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Figure 2.5: Model predictive controllers based on min-max optimization

The synthesis of a model predictive controller based on the optimization in closed loop
is computationally more expensive than model predictive controller based on the op-
timization in open loop (section 2.3.1). A total number of controls that are computed
with the optimization in closed loop depends on the length of the control horizon as
well as on the number of vertices of the set W. With the length of the control hori-
zon denoted by N and the set W with m vertices, a total number of computed control
inputs is equal to m N . It grows exponentially with the control horizon.

2.3.3 Stochastic disturbances in model predictive control

Deterministic, worst case approach to the disturbance rejection in model predictive
control described in the previous two subsections has one obvious drawback. Perfor-
mance of the control system is determined by the most excessive disturbance real-
ization. It can be too conservative due to the over-bounding of the disturbance. An
alternative approach to the disturbance rejection is the stochastic approach. The main
advantage of the stochastic approach is that the performance of the control system
can be improved by a considerable degree, at the expense of a small risk of the con-
straint violation. If the application at hand allows that risk, the potential benefit in the
form of the performance enhancement might be large. This is already well known in
the robust control community and it motivated a probabilistic view on robustness of
uncertain control systems (see [27, 78, 118, 136, 145, 146]).

To approach to the problem of the stochastic disturbance in model predictive con-
trol formally, we assume that the model (2.25) is subject to a disturbance w(k) ∈
N (0, Qw), i.e. the disturbance w(k) is a member of the family of normally dis-
tributed random variables denoted by N , with zero mean and a covariance matrix
Qw ∈ Rl ×R

l . Moreover, for k �= j , w(k) and w( j) are independent. In other words,
the disturbance w is a Gaussian white noise.
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Next, assume that the predicted state (x N (k))N+1
k=0 is generated by (2.25), with an initial

condition x N (0) := x , with the disturbance wN (k) = w(t + k), k ∈ T and the input
v = (vk)

N
k=0 ∈ V. Thus, the disturbance over the control horizon is assumed to be

stochastic, from the same family as the disturbance w. Since the predicted state x N is
a function of the disturbance wN and the input v it is also stochastic.

In [83], the authors propose a model predictive controller to deal with the stochastic
disturbance wN over the control horizon. The optimization in the model predictive
controller is assumed to be in the open loop. We will briefly outline the approach
reported in [83].

With the stochastic disturbance, the cost (2.3) is a stochastic quantity. Because of
that, it is necessary to consider the expected value of the cost (2.3) in the optimization
problem that has to be solved at each time step by a model predictive controller. With
the stochastic disturbance over the control horizon consider the following optimization
problem.

Problem 2.3.4 Given the initial state x = x(t), find an optimal input v ∗ ∈ V such
that

E J (x, v∗ ) ≤ E J (x, v) (2.39)

for all v ∈ V. In addition determine the optimal cost given by:

V (x) := inf
v∈V

E J (x, v)

where E denotes expectation.

If an optimal input v∗ = (v∗k )N
k=0 exists, then V (x) = E J (x, v∗ ). Only the first el-

ement of v∗ is applied to the plant. At the next time instant the control horizon is
shifted forward and the optimization problem 2.3.4 is solved for a new state mea-
surement. The optimization problem 2.3.4 with the receding horizon implementation
defines a time invariant stochastic model predictive control law ξ : Rn → U such that
for a given x

ξ(x) = v∗0 . (2.40)

A model predictive controller (2.40), derived in [83], is based on an optimization in
open loop. As already mentioned, there is a discrepancy between control in open
loop over the control horizon and the actual control of the plant which is performed
by the feedback law given by (2.40). When stochastic disturbances are present, this
discrepancy causes a significant difference between predicted and the true behaviour
of the system. The following example illustrates this difference.

Example 2.3 Consider a first order system:

x(k + 1) = x(k)+ u(k)+w(k)
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Figure 2.6: Prediction with a stochastic disturbance

with x(k), u(k) andw(k) all scalar valued, w(k) is a stochastic variable with zero
mean and variance Qw. We look at the prediction x N : T → R over the control
horizon T = {0, · · · , N}. The predicted state x N (k), k ∈ T is a stochastic variable.
We are interested in the variance of the predicted state for two cases. The first one is
the case with an open loop control sequence v : T → R and the second one is with
feedback control laws (πk)

N
k=0. For the closed loop case we use a linear feedback of

the form:
v(k) = − f xN (k), f ∈ R, k ∈ T .

The variance for the control in open loop is given by:

Var {xN (k + 1)} = E

{
(xN (k + 1)− ExN (k + 1))2

}
= Var {xN (k)} + Qw (2.41)

and for the closed loop control as:

Var {xN (k + 1)} = (1 − f )2 Var (xN (k))+ Qw. (2.42)

With f = 1 the variance (2.42) is equal to Qw . On the other hand, with the open
loop control one does not have any control on the growth of the variance in (2.41)
as N → ∞. In this example the variance (2.41) will grow without upper bound as
N → ∞ (see figure 2.6). •
As example 2.2 shows, a model predictive controller with the optimization in closed
loop rejects disturbances better and steer the system closer to constraints. The closed
loop optimization described in subsection 2.3.2 consider the disturbance realizations
that maximize the cost. Unfortunately, with w(k) ∈ N (0, Qw) the disturbance is no
longer bounded so min-max approach to the optimization is not feasible. An ad hoc
solution would be to neglect the disturbance realizations that have a small probability
to occur and bound the disturbance in this sense. Note that any bound that is not a
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polytope in Rl (but a ball or ellipsoid in Rl ) will still yield an infinite dimensional
optimization problem in the min-max setting from subsection 2.3.2.

An intrinsic feature of the min-max optimization is that the overall performance of the
model predictive controller is determined by the worst case disturbance realizations.
In min-max optimization we seek for a controller that will ensure that constraints are
respected for all possible disturbance realizations. When the disturbance is stochastic,
however, the natural problem setup is to find a controller that will minimize the prob-
ability of the constraint violation, so min-max optimization does not capture the true
nature of the problem.

2.4 Conclusion

In model predictive control the current control action is obtained by solving, at each
sampling instant, a finite horizon, convex optimal control problem, using the current
state of the plant as the initial state. The optimization yields an optimal control se-
quence and the first control in this sequence is applied to the plant. This process is
repeated at the next sampling time, therewith defining a receding horizon control strat-
egy. Although there are other control techniques available in the control literature to
deal with the control constrains, model predictive control is the only one that has a
significant and widespread impact on industrial process control.

In this chapter we introduced the standard setting for model predictive control. Since
there is a vast portion of the model predictive control literature that deals with the
stability of the standard model predictive scheme, we have given an overview of the
available approaches to the stability issue. There are two basic modifications of the
standard model predictive control that are proposed in the literature to achieve the
closed loop stability. The first one of them is to include the end point penalty in the
cost function. The end point penalty increases the cost if the state at the end of the con-
trol horizon is not in the origin. The rigorous analysis of the closed loop behavior as a
function of the end point penalty is difficult and there is not many results available in
the literature. Despite that, the end point penalty is a common ingredient of model pre-
dictive schemes that is accepted in industrial control practice, where the weight of the
end point penalty is seen as a “tuning” parameter. The second modification is to con-
strain the state at the end of the control horizon in the terminal constraint set which is
controlled invariant under some known controller. This technique is widespread in the
model predictive control literature. Stability results based on the terminal constraint
set are nowadays considered classical. When an unconstrained, stochastic disturbance
is acting on the plant, an analysis based on the terminal constraint set is impossible.

When an unbounded, stochastic disturbance is present, such as Gaussian white noise,
a tuning of the end point penalty is the only available mechanism to achieve the closed
loop stability. When the disturbance is bounded, the approaches proposed in the liter-
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ature are mostly based on the so called min-max optimization. The main feature of the
min-max optimization is that the optimization over the control horizon is performed
with an assumption that the disturbance over the control horizon is the worst possible
in the sense that it maximizes the cost. In this way, the performance of the controlled
system is determined by the most excessive disturbance realization. When the distur-
bance acting on the plant admits a stochastic model, with the worst case optimization
the closed loop behavior of the system is likely to be determined by disturbance real-
izations that have a small probability to occur. Alternative to the worst case paradigm
is to include stochastic disturbance model in the optimization and to solve a stochastic
optimization problem. In this way, we seek for a controller that will minimize the
probability of the constraint violation. In this approach it is necessary to consider op-
timization in closed loop, since the optimization in open loop gives a prediction with
unbounded variance as N → ∞. The optimization in closed loop, however, results
in a difficult optimization problem. In the following chapters we will show how this
problem can be solved approximately but with arbitrary accuracy.
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3

Model predictive control for stochastic
systems with constrained inputs

This chapter is based on the paper [11], which is submitted for publication. Parts of
this paper have been presented at the American Control Conference 2001 [13] and the
European Control Conference 2001 [12].

3.1 Introduction

It is often claimed that the increasing popularity of Model Predictive Control (MPC)
in an industrial environment stems from its capability to allow operation closer to
constraint boundaries, when compared with conventional control techniques. This
often leads to more profitable operation of the plant (see [91,119]). When disturbances
are acting on the plant which one aims to control, then it is evident that the better the
control system is dealing with disturbances the closer one can operate the plant to the
constraint boundaries.

In the MPC setting, there are three basic approaches for dealing with disturbances that
have been suggested in the literature.

The first approach is to assume that the disturbance is known and either zero or con-
stant over the optimization interval. This is known as the classical setting for which
there exists a vast literature (see [97]) based on convex on-line optimization. First
attempts have been made to obtain a closed-loop solution (see [17, 129]). During the
optimization over the chosen control horizon, this approach tends to ignore the effects
that disturbances can have on the plant. In particular, the performance limitations im-
posed by the constraints are underestimated by this approach. Moreover, as the control
horizon tends to infinity, optimal performance is not recovered.

The second approach assumes unknown disturbances and is based on a worst case
optimization where the minimization is performed over a set of input sequences and
maximization over a set of disturbance sequences (see [85]). To be feasible, this ap-
proach requires disturbances to be bounded. Since the min-max optimization looks for
the worst possible disturbance realization this approach is generally too "pessimistic".

The third approach is a stochastic one. A stochastic view on disturbances in MPC
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could be traced back to the early works in the field like Clarke’s Generalized Pre-
dictive Control (see [41–43]). The classical results are only valid when there are no
constraints on the input and/or states as in the many references that follow the same
line of thought up to today. A modification of the open loop convex optimization is
proposed in [83] for the case of a constrained input and a stochastic disturbance.

We would like to stress that almost none of the model predictive control algorithms
currently available incorporate the disturbances in their design. It is only the stability
of the feedback scheme that let us conclude that the effect of disturbances will remain
bounded. The few papers that handled disturbances either excluded constraints (a
relatively easy case) or looked at a worst case analysis. Regarding the latter it is widely
accepted that worst case analysis has its limits. Therefore, it is clearly necessary to
study the effect of stochastic disturbances in more detail.

The main difficulty with a stochastic disturbance in MPC is that the predicted behav-
ior and the actual behavior of the plant can differ significantly. The standard, convex
optimization in open loop does not take the difference into account between actual
and predicted behavior of the plant. As a consequence, questions related to achievable
performance can not be addressed properly, while the optimization criterion largely
ignores the true characteristics of the plant. Hence the input is chosen on the basis of
a criterion which does not reflect the true characteristic of the plant. Unfortunately,
when a controller is designed in closed loop, constraints make a minimization of the
expected value of the cost function over the horizon a very difficult optimization prob-
lem. In the case where an analytic solution is not possible and standard computational
methods are too complex, Monte Carlo methods have been applied in control theory
mostly in connection with robustness (see [10, 36, 118, 136]).

In this chapter we present a disturbance rejection scheme for MPC based on a ran-
domized algorithm which minimizes an empirical mean of the cost function. The
optimization at each step is a closed loop optimization. Therefore it takes the effect of
disturbances into account. Because we do not impose any a priori parameterization of
the feedback laws over the horizon, the algorithm is computationally demanding but
it gives a reliable measure of the achievable performance.

In the second algorithm, presented here, the optimization is performed over a class
of saturated feedback controllers. A significant reduction in the computational effort
is achieved by postulating a controller structure in the closed loop optimization. The
result is an algorithm that is computationally less demanding compared to the first
one, at the expense of some performance loss.

The chapter is organized as follows. The problem definition is given in section 3.2.
The background material on randomized algorithms is presented in section 3.3. The
algorithm for solving the problem with an arbitrary accuracy and a convergence proof
for the result obtained by the algorithm are given in section 3.4. A simplified algorithm
is given in section 3.5. Finally, numerical examples are presented in section 3.6 and
conclusions are given in section 3.7.
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3.2 Problem formulation

In this chapter, we consider a linear time-invariant plant subject to amplitude con-
straints on the input and stochastic disturbances. The plant is represented with the
following state space model:

ρx = Ax + Bu + Ew

z = Cz x + Dzu
(3.1)

where x(k) ∈ Rn is the state and u(k) ∈ U ⊂ R
m is the input. The set U is a compact,

convex set which contains an open neighborhood of the origin. Input constraints that
we consider are constraints on the amplitude of the input. A typical example of these
constraints are constraints imposed by saturating actuators. The forward shift operator
ρ is defined by (ρx)(k) := x(k + 1). We assume that a disturbance w(k) ∈ W ⊆ R

is a scalar valued white noise stochastic process taking values in the set W with some
known probability distribution. All results presented in this chapter can be easily
extended to the general case where W ⊆ R

q . The assumption of a scalar valued
disturbance is for notational convenience, it allows us to expose ideas in the chapter
clearly. The second equation describes the controlled output z(k) ∈ R

p . We assume
that the state of the plant is measured and we denote the measured state at time t ,
t ∈ Z+ by xt , i.e. xt := x(t).

A constrained input limits our ability to control the linear plant. To approach this in a
more formal way, set w = 0 in (3.1):

x(k + 1) = Ax(k) + Bu(k) u(k) ∈ U. (3.2)

Suppose that at time t = 0 system (3.2) has an initial state x(0) = x 0, x0 ∈ R
n .

Further, suppose that the system (3.1) is controlled by a static feedback controller,
i.e., at each t , the input u(t) is a function of the state x(t). A controller is an element
ϕ ∈ � where � is the set of continuous maps ϕ : Rn × Z+ → U that map the origin
of the state space to the zero input:

ϕ (0, t) = 0 for all t ∈ Z+.

Starting at time t = 0, the state x and the output z are stochastic processes generated
by (3.1) with the input:

u = (
ϕ (x(t), t)

)∞
t=0. (3.3)

Definition 3.2.1 Suppose that the state x is generated by (3.2) with input (3.3) and an
initial state x0 ∈ R. If there exists a controller ϕ ∈ � such that

x(t) → 0 as t → ∞
then the state x0 is a null controllable point in the state space.
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All null controllable points define a set in the state space which is known as the recov-
erable set, here denoted as X. In general, the recoverable set is a subset of the state
space. The recoverable set contains all points in the state space if and only if the matrix
pair (A, B) is stabilizable and all eigenvalues of the system matrix A lie on or inside
the unit circle in which case we say that the system (3.2) is globally asymptotically
stabilizable (see [125] for details).

When w is a nonzero stochastic process, a Gaussian white noise is a typical example,
the recoverable set for the system (3.1) is empty unless the system (3.1) is globally
asymptotically stabilizable. Therefore, the following assumption is necessary when
one deals with the stabilization of the linear system, subject to input constraints and
possibly unbounded disturbances.

Assumption 3.2.2 The system (3.1) is globally asymptotically stabilizable i.e. the
matrix pair (A, B) is stabilizable and all eigenvalues of the matrix A lie on or inside
the unit circle. As a consequence X = R

n .

The essential problem in which we are interested is the design of a controller which
minimizes some cost function over an infinite horizon. This problem is too com-
plex and therefore we design a controller based on a receding horizon paradigm.
The optimization problem is solved at each time instant t , t ∈ Z+ over an interval
It := {t + k|k ∈ T } where T := {0, · · · , N} and N > 0. The interval It is a time
dependent interval, it recedes with time.

The model of the plant (3.1) as well as the cost function and optimization problem to
be defined later, are time-invariant. Therefore, the current time can be set to 0 without
loss of generality. We will refer to the interval T as the control horizon with length N .

The progression of the predicted state over the control horizon is denoted by x N :
{0, · · · , N + 1} → R

n . Over the control horizon, it is assumed that the model (3.1)
is subject to the disturbance wN : T → W. The input of the plant over the control
horizon is optimized in closed loop i.e. the input u(k) is a function of the predicted
state xN (k). Formally, we define the set of feedback control laws � where π ∈ � is a
sequence (πk)

N
k=0 such that for any k ∈ T , the map πk : Rn → U is continuous. The

progression of the predicted state (xN (k))N+1
k=0 is generated by (3.1), with an initial

condition x N (0) := xt , with the disturbance w(k) = wN (k) and the input u(k) =
πk (xN (k)). Note that the predicted state x N is a function of the measured state x t ,
the feedback control laws in the vector π and the disturbance w N and is therefore
stochastic.

The cost we consider over the control horizon is given by:

J (xt , π,wN ) :=
∑
k∈T

‖Cz xN (k)+ Dzπk(xN (k))‖2 + ‖xN (N + 1)‖2
Q (3.4)

with xN (0) = xt and the predicted state x N .
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The expression ‖x‖2
Q := 〈x, Qx〉 is called an end point penalty with Q ∈ R

n×n a
non-negative definite, symmetric matrix. An end point penalty is required to achieve
stability of the receding horizon controller.

Because of the stochastic disturbance, we minimize the expectation of the cost func-
tion (3.4). The optimization problem to be solved is stated next.

Problem 3.2.3 Find a vector of optimal feedback mappings π ∗ ∈ � such that

E J (xt , π
∗, wN ) ≤ E J (xt , π,wN )

for all π = (πk)
N
k=0, π ∈ � and for all xt where E denotes the expectation operator.

In addition, determine the optimal cost given by:

V (xt ) := inf
π∈� E J (xt , π,wN ). (3.5)

If the vector of optimal feedback mappings π ∗ exists, then V (xt ) = E J (xt , π
∗, wN )

and only the first element of π ∗ is significant in the receding horizon implementation.
It determines the current input for the plant as a function of the current measurement.
In the next time instant, the control horizon is shifted forward and problem 3.2.3 is
solved based on a new state measurement. Note that the cost function (3.4) is time
invariant. Therefore, the receding horizon controller in the setting described above, is
given by:

u(t) = π∗
0 (xt ) t ∈ Z+ (3.6)

where u(t) is the input which is fed to the plant at time t .

With an analytical solution of problem 3.2.3 one can implement the controller (3.6)
explicitly, without on-line computations. Unfortunately, there are several reasons why
the above problem is a difficult one to solve. The main difficulty is that the optimal
feedbackπ ∗ is an element of an infinite dimensional space which makes problem 3.2.3
an infinite dimensional optimization problem except for cases in which the disturbance
is taking values from a finite set. In contrast, the standard MPC optimization chooses
the input in open loop and only requires a search for an optimal open loop input vector
which is an element of a finite dimensional space.

The optimization problem 3.2.3 is related to some well-known control problems as
outlined in the following remarks.

Remark 3.2.4 Without constraints on the input and with a stochastic disturbance
which has the expectation equal to zero it is well-known that the optimal feedback
is in the class of linear state feedback controllers. In other words π k can, without loss
of generality, be chosen as a linear state feedback. The receding horizon controller
(3.6) then has the form of a linear state feedback law:
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u(t) = F0xt t ∈ Z+

where F0 is the first element of the vector (Fk)
N
k=0 defined by the following backwards

recursions:

Pk = AT Pk+1 A + CT
z Cz − (AT Pk+1 B + CT

z Dz)(BT Pk+1 B + DT
z Dz)

−1×
× (BT Pk+1 A + DT

z Cz) PN+1 := Q (3.7)

and
Fk = −(BT Pk+1 B + DT

z Dz)
−1(BT Pk+1 A + DT

z Cz)

where k ∈ [0, N].
For this case, it is known that the issue of stability of the overall system crucially de-
pends on the choice of the matrix Q in the end point penalty. In general, the more the
state at the end point is penalized in (3.4), the more likely it is that a model predictive
control law will yield a stable closed loop system. The case is especially simple when
Q is chosen as a steady-state solution of the Riccati equation (3.7). The controller
(3.6) is then simply equivalent to the infinite-horizon LQ controller for the plant. An
interesting problem that is posed in [141] and [158] is to investigate the stability prop-
erties of the controlled system as a function of the end point penalty. Results are
obtained for the unconstrained case.

When constraints are present, the analysis of the closed loop stability as a function of
the end point penalty becomes difficult. It is crucial to note that we need generally a
stronger notion of stability when a stochastic system is considered because the vari-
ance of the state is required to remain bounded. Note that model predictive control
schemes based on a terminal constraint set (see [37, 97, 100]) can obviously not be
applied when the disturbance is unbounded. Even if the disturbance is bounded it still
requires considerable work to establish stability in the stochastic setting with a use of
these techniques as a starting point.

The only available approach is to include the end point penalty in the cost function
and to see the end point penalty as a “tuning parameter”.

Remark 3.2.5 Another simplification of the problem is the case with input constraints
where the disturbance is assumed to be known and constant over the control horizon,
i.e. wN = w∗

N where w∗
N is a fixed disturbance. In that case the progression of the

predicted state is a trajectory, denoted as x ∗
N which is a function of the state measure-

ment xt , fixed disturbance w∗
N and the input u(k) = πk

(
x∗

N (k)
)
. Since at each k ∈ T

one has to compute an optimal map only in states x ∗
N (k) an optimization in open loop

and an optimization in closed loop yield the same infimum. This observation allows
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one to consider input vectors u N : T → U and an optimization problem of finding an
optimal input vector u∗

N such that:

J (xt , u∗
N , w∗

N ) ≤ J (xt , uN , w∗
N )

for all u N : T → U, instead of problem 3.2.3. This problem is a finite dimensional
convex optimization problem. The solution can be obtained by a standard quadratic
programming algorithm. This is a prototype of the optimization in open-loop that is
prevailing in the MPC literature. As shown in [18] the resulting receding horizon con-
troller can be expressed as a feedback which is piecewise linear and continuous. When
stochastic disturbances are included in the model, solving the optimization in open
loop yields a suboptimal solution to the optimization problem with a considerably
larger cost (see [99] and the example in [55] and [56]). The only way to compute the
optimal solution is via stochastic dynamic programming which can be a vastly difficult
task for all but very simple systems. The predictive controller with the optimization
in open loop is a feedback controller because of the receding horizon implementa-
tion. The difference between a predictive controller and the control law computed via
stochastic dynamic programming is difficult to access. Different claims can be found
in the literature. Example in [55] and [56] shows small difference but a similar exam-
ple in [116] shows a considerable difference. These examples are mainly concerned
with the difference in the closed loop performance. The prediction is often used as
an indication of the future behavior of the system not just as a means to compute the
control input. Because of the stochastic nature of the state, the prediction based on the
control in open loop and the true behavior of the system can differ significantly.

In this chapter, we solve the optimization problem 3.2.3 approximately but with an
arbitrary high accuracy. The method, presented as an algorithm, is based on the use
of the empirical mean instead of the expectation in the optimization problem 3.2.3. A
computation of the empirical mean is based on a randomized algorithm. The accuracy
depends on the number of samples of the disturbance w. The main value of the algo-
rithm is that it is able to compute the limit of performance in stochastic disturbance
rejection for linear systems with input constraints, a question that is left unanswered
in the available literature.

3.3 Empirical mean

An analytical computation of the expectation of the cost (3.4) is difficult. An alter-
native is to compute the empirical mean of the cost in (3.4). The cost for a specific
realization of the stochastic disturbance w is easily computed but realizations have to
be chosen so that the empirical mean is computed efficiently. It is well known that an
estimate based on linear gridding requires a number of samples that is exponential in
the dimension of the stochastic variable to preserve accuracy in estimation. A standard
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method that overcomes this problem is Monte Carlo simulation. Realizations of the
stochastic disturbance are chosen randomly, according to the distribution of w. It is
well known that bounds on the number of samples needed to preserve accuracy of the
estimation can be obtained independent of the underlying distribution of the stochas-
tic process. In the following, the problem of computing the empirical mean is given a
formal setting.

Assume a set � and a probability measure P on � are given. Let f : � → � be
a scalar valued function measurable with respect to P where � is an interval on R
(possibly equal to R). The expectation of f can be expressed as:

E f =
∫
�

f (θ)d P (3.8)

Our aim is to approximate (3.8) by drawing m independent, identically distributed
(i.i.d) samples ϑ = {θ1, · · · , θm} from � in accordance with P and computing the
empirical mean by setting

Ê f := 1

m

m∑
j=1

f (θ j ) (3.9)

The empirical mean (3.9) is a function of a randomly chosen multisample ϑ and it is
obviously stochastic. Such an estimate is useful only if we have an insight in the error
given by |E f − Ê f |. Since (3.9) is stochastic, the error is expressed in a probabilistic
confidence interval rather than in the form of a strict bound. We have confidence δ in
the approximation (3.9) with accuracy ε if |E f − Ê f | < ε with a probability of at least
δ. A lower bound for the confidence δ can be easily derived by using a well known
Chebyshev inequality (see [151], for example). The bound then takes the form:

Prob
(
|Ê f − E f | < ε

)
≥ 1 − (Var f )2

mε2 (3.10)

where Var denotes variance.

Theorem 3.3.1 The empirical mean (3.9) converges in probability to the expectation
E f i.e.

Prob
(
|Ê f − E f | < ε

)
→ 1 as m → ∞,

for all ε > 0.

Proof: The claim of the theorem follows from (3.10) as m → ∞.

The lower bound (3.10) can be applied in the general case � = R. When ε is held
constant, the lower bound on probability (3.10) converges to 1 at a polynomial rate as
the number of samples m increases. In the literature, lower bounds for the confidence
δ which converge to 1 exponentially are available for some special cases. In [69] Ho-
effding’s inequality is derived which yields a lower bound for the confidence δ. The
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bound converges to 1 exponentially if the random variable has a bounded range. The
bound obtained from Hoeffding’s inequality does not depend on the probability mea-
sure P nor the dimension of the set �. In particular, the exponential convergence of
the confidence makes its assessment for a large number of samples less conservative
than with the inequality (3.10). For details on the application of Hoeffding’s inequal-
ity to the confidence of the empirical mean (3.9) we refer to [151]. However, this
inequality is intrinsically restricted to the case of stochastic variables with a bounded
range, where � is a bounded subset of R. For a detailed treatment of convergence
issues arising when one consider stochastic processes we refer to [112].

3.4 Algorithm 3.1: An approximate but arbitrarily ac-
curate solution

At time instant s ∈ T the state xN (s) is a stochastic variable. The system (3.1) is
strictly causal so xN (s) does not depend on the “future” disturbances (wN (k))N

k=s .
This allows us to define an optimal cost “to go” at each s ∈ T as:

Vs(x) := inf
π s

E Js (x, π
s , ws) (3.11)

where for all s ∈ T we define:

Js(x, π
s , ws) :=

N∑
k=s

‖Cz xN (k)+ Dzπk(xN (k))‖2 + ‖xN (N + 1)‖2
Q (3.12)

with xN (s) = x , disturbance ws := (wN (k))N
k=s and π s := (πk)

N
k=s is a vector of

feedback mappings πk : Rn → U. Note that for s = 0 the optimal cost V0(x) is equal
to the optimal cost (3.5) and the cost “to go” J0(x, π0, w0) is equal to the cost (3.4).
Also, π0 = π and w0 = wN .

By using (3.11), the optimal cost (3.5) can be rewritten as a dynamic program (see [9]
for detailed treatment of stochastic dynamic programming) given by:

Vs(x) := inf
u∈U

{
‖Cz x + Dzu‖2 + Ew Vs+1(Ax + Bu + Ew)

}
(3.13)

with an initial condition:
VN+1(x) := ‖x‖2

Q

and where E (·) denotes conditional mean with respect to (·). Dynamic program (3.13)
has to be solved backwards from s = N to s = 0.

The expectation in (3.11) and (3.13) can be easily computed only for the case s = N .
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For s = N , an optimal cost “to go” is given by:

VN (x) = inf
u∈U

{‖Cz x + Dzu‖2 + ‖Ax + Bu‖2
Q

}+ ET QE Var(w). (3.14)

For s = 0, · · · N − 1 the optimal cost “to go” does not have a quadratic structure
and the computation of the expectation is not straightforward. An alternative that we
suggest in this chapter is to compute an empirical mean and use it as an approximation
for the expectation. To compute the empirical mean, a number of samples have to
be drawn based on an underlying probability distribution, a process usually called
sampling.

Suppose that we take κ samples of the disturbance wN (0) at k = 0. Given a fixed ini-
tial condition xt and a fixed input u(0) = π0(xt) there are κ possible states x N (1). For
each one of these possible futures we generate κ samples of the disturbance w N (1)
which establishes κ2 possible future states x N (2). In this way, the sampling of the
disturbance yields κ N samples of w. The number of samples of the restricted distur-
bance sequence ws is κN−s . The number of samples of w grows exponentially with
the horizon. The sampling as described is required for a sufficient number of samples
of the future disturbance given x N (s) which is needed to get a good estimate for Vs .
One might conjecture that we do not need this because a very accurate estimate of V s

is not required. Actually, only a good estimate of π0 is needed. However, we have no
proof that a restricted set of samples still yields a correct result with a high probability.

Other an approach would be to form a grid on the state space and to estimate V s on the
points of the grid. Note that any kind of linear grid will not reflect a spread of the state
around its mean value, resulting in a great number of points in which the state is not
likely to be. The sampling procedure described above gives a grid on the state space
that is more dense in the region in which the state is more likely to be. Moreover, the
number of grid points grows exponentially (in the dimension of the state space) while
the number of points required for stochastic sampling is independent of the dimension
of the state space.

For all s ∈ {0, · · · , N} and for each of the κ N−s samples of ws denoted by ws
i ,

i ∈ {1, · · · , κN−s } the cost function is given by:

Js(x, π
s, ws

i ) =
N∑

k=s

‖Cz xN (k)+ Dzπk(xN (k))‖2 + ‖xN (N + 1)‖2
Q (3.15)

with xN (s) = x .

The empirical mean of the cost function given a vector of feedback mappings π s =
(πk)

N
k=s is:

Ê Js(x, π
s, ws ) := 1

κN−s

κN−s∑
i=1

Js(x, π
s, ws

i ). (3.16)
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A direct application of the inequality (3.10), for some vector of feedback mappings
π s , yields:

Prob
{∣∣∣Ê Js

(
x, π s, ws)− E Js

(
x, π s, ws)∣∣∣ < ε

}
→ 1

for all s and for all ε > 0 as κ → ∞. Thus, the empirical mean of the cost “to go”
(3.16) converge in probability to its true mean.

An approximation of the optimal cost “to go” (3.11) is given by:

V̂s(x) := inf
π s

Ê Js(x, π
s, ws ). (3.17)

We call V̂s(x) an empirical optimal cost “to go”. The empirical optimal cost “to
go” needs, in principle, to be computed for all points in the state space. To make the
problem computable in finite time, one could suggest to define a grid on the state space
and compute the empirical optimal cost “to go” in the points of the grid. However, not
only is this approach near impossible when the dimension of the state space is high,
but it also ignores the fact that some states are more likely than others. Instead, we
look at all of our sampled past disturbances and predict x N (s). This yields a “grid” of
the state space which is not uniform but is instead biased towards those states which
are “likely”, given past disturbances.

If we consider an arbitrary time instant s in the control T then the number of points for
which we evaluate V̂s(x) is determined by all past disturbance realizations w(τ), τ ∈
{0, · · · , s − 1}. With disturbances sampled as described previously, the number of
points in the state space in which we evaluate the empirical cost “to go” is equal to κ s .
This yields an exponential growth of the number of points as we move further from
s = 0 towards the end of the horizon.

The algorithm for an arbitrary accurate solution to the optimization problem 3.2.3 is
based on the following theorem.

Theorem 3.4.1 Consider the approximation of the optimal cost (3.5) given by (3.17)
with s = 0:

V̂0
(
x
) = inf

π0∈�
{Ê J

(
x, π0, w0)}. (3.18)

The optimal cost (3.18) and the associated optimal vector of feedback mappings π ∈
� can be obtained recursively from the following dynamic program:

V̂s(x) := inf
u∈U

{
‖Cz x + Dzu‖2 + Êw V̂s+1(Ax + Bu + Ew)

}
(3.19)

with an initial condition:
V̂N+1(x) := ‖x‖2

Q
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that has to be solved backwards from s = N to s = 0 and where Ê (·) denotes empirical
conditional expectation with respect to (·).

We first present an auxiliary result, used in the proof of the above theorem.

Lemma 3.4.2 Consider a random variable ω taking values in R and the set �w of
continuous functions π : R → U ⊂ R with U compact. Next, consider a continuous
function f : R × U → R such that for each w ∈ R, f (w, u) is convex in u. Then

inf
π∈�w

E { f
(
ω,π(ω)

)} = E {min
u∈U

{ f (ω, u)}}. (3.20)

Proof: Assume that a function π ∈ �w is given. The following inequality follows:

E { f
(
ω,π(ω)

)} ≥ E {min
u∈U

{ f (ω, u)}}. (3.21)

If f (w, u) is strictly convex in u then the minimum with respect to u is unique for
each w and it is easily shown that there exists a unique continuous function π ∈ �w

such that:
f (ω, π(ω)) = min

u∈U
f (ω, u). (3.22)

This clearly implies in combination with (3.21) that (3.20) is satisfied.

If f (w, u) is convex in u then f (x, u) + ε‖u‖2 is strictly convex in u and hence
according to the above we find:

inf
π∈�w

E f (ω, π(ω))+ ε‖π(ω)‖2 = E min
u∈U

f (ω, u) + ε‖u‖2. (3.23)

Noting that U is compact and hence ‖u‖2 uniformly bounded implies that (3.23) yields
(3.20) as ε → 0.

The proof of theorem 3.4.1 is presented next.

Proof: Observe that (3.18) can be rewritten as:

inf
π0
ÊwN (0)ÊwN (1) · · · ÊwN (N)

{ N∑
k=0

‖Cz xN (k)+ Dzπk
(
xN (k)

)‖2 + ‖xN (N + 1)‖2
Q

}
because of the fact that wN (0) · · ·wN (N) are independent stochastic variables. Next,
we use the causality of the system (3.1) (a "current"state does not depend on "fu-
ture" disturbances) to rewrite (3.18) again:

inf
π0

{‖Cz xN (0)+ Dzπ0(xN (0))‖2 +
N∑

k=1

ÊwN (0)ÊwN (1) · · · ÊwN (k−1)‖z(k)‖2+

+ ÊwN (0)ÊwN (1) · · · ÊwN (N)‖xN (N + 1)‖2
Q

}
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where:
z(k) = Cz xN (k)+ Dzπk(xN (k)), k ∈ [1, N].

The causality argument allows to “move” the infimization operator inside the brackets
so that we can consider the optimization over feedback maps one by one as follows:

inf
π0···πN−1

{
‖z(0)‖2 +

N−1∑
k=1

ÊwN (0)ÊwN (1) · · · ÊwN (k−1)‖z(k)‖2+

+ inf
πN
ÊwN (0)ÊwN (1) · · · ÊwN (N−1)

{‖z(N)‖2 + ÊwN (N)‖xN (N + 1)‖2}}.
By lemma 3.4.2, the last term of this expression can be rewritten as

ÊwN (0)ÊwN (1) · · · ÊwN (N−1) inf
u∈U

{‖z(N)‖2 + ÊwN (N)‖xN (N + 1)‖2}.
Define

V̂N (x) := inf
u∈U

{‖Cz x + Dzu‖2 + Êw ‖Ax + Bu + Ew‖2}.
This allows to rewrite (3.18) as:

inf
π0···πN−2

{
‖z(0)‖2 +

N−2∑
k=1

ÊwN (0)ÊwN (1) · · · ÊwN (k−1)‖z(k)‖2+

+ inf
πN−1

ÊwN (0)ÊwN (1) · · · ÊwN (N−2)
{‖z(N − 1)‖2 + ÊwN (N−1) V̂N (xN (N))

}}
.

As the next step, define:

V̂N−1(x) := inf
u∈U

{‖Cz x + Dzu‖2 + ÊwN (N−1) V̂N (Ax + Bu + Ew)
}

and rewrite (3.18) as:

inf
π0···πN−3

{
‖z(0)‖2 +

N−3∑
k=1

ÊwN (0)ÊwN (1) · · · ÊwN (k−1)‖z(k)‖2+

+ inf
πN−2

ÊwN (0)ÊwN (1) · · · ÊwN (N−3)
{‖z(N −2)‖2+ ÊwN (N−2) V̂N−1(xN (N −1))

}}
.

By proceeding in this way, the optimization problem (3.18) can be rewritten as the
recursion (3.19).

The following lemma states an important property of the empirical optimal cost “to
go” (3.17).
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Lemma 3.4.3 The empirical optimal cost to go (3.17) is a convex function in x for
all s ∈ T .

Proof: The empirical optimal cost (3.17) is defined as a minimization over a class
�s where π s ∈ �s is a sequence of maps π s

k : R → U such that u N (k) = π s
k (xN (k))

with k = s, . . . , n. We first extend the class �s of functions over which optimization
is defined. Assume we optimize over �̃s where π̃ s ∈ �̃s is a sequence of maps
π̃ s

k : Rn(k+1) → U such that

uN (k) = π̃ s
k (xN (0), xN (1), . . . , xN (k)). (3.24)

Since the future at time k only depends on x N (k), it is obvious that this extension of
the class of controllers does not change the infimum. Next, note that the feedbacks in
the class �̃s can be equally represented by the class �̄s where π̄ s ∈ �̄s is a sequence
of maps π̄ s

k : Rn+k → U such that

uN (k) = π̄ s
k (xN (0),wN (0), . . . , wN (k − 1)) . (3.25)

This is based on the fact that

• Given xN (0),wN (0), . . . , wN (k−1) and π̄ s we can recursively construct x N (0),
xN (1), . . ., xN (k) and π̃ s such that

π̄ s
k (xN (0),wN (0), . . . , wN (k − 1)) = π̃ s

k (xN (0), xN (1), . . . , xN (k)) (3.26)

• Given xN (0), xN (1), . . . , xN (k) and π̃ s it is possible to recursively construct
xN (0), wN (0), . . ., wN (k − 1) and π̄ s such that (3.26) is satisfied. If E is not
injective then wN (0), . . . , wN (k−1) are not uniquely determined but it is trivial
to see that this does not affect the corresponding infima.

We conclude that the infimum in (3.17) is the same if π s is taken from �s , �̃s or �̄s .
It therefore suffices to show that

inf
π̄ s∈�̄

Ê Js(x, π̄
s , ws)

is a convex function in x .

To prove that, consider x a, xb ∈ R
n , xa �= xb. The corresponding minimizing feed-

backs in �̄s are denoted by π̄ s
a and π̄ s

b , respectively.

The empirical optimal cost to go is computed for a finite number of disturbance real-
izations ws . Define:

ua
i := π̄ s

a (x
a, ws

i )

and:
ub

i := π̄ s
b(x

b, ws
i ).
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The cost (3.12) for fixed w is quadratic in (x, u) and therefore jointly convex in (x, u):

Js(λxa + (1−λ)xb, λua
i + (1−λ)ub

i , w
s
i ) ≤ λJs(x

a, ua
i , w

s
i )+ (1−λ)Js(x

b, ub
i , w

s
i )

where λ ∈ (0, 1).

Since the empirical mean Ê Js(x, u, w) is defined via operations that preserve convex-
ity, it is also a convex function in (x, u). Clearly:

π̄ s∗(x, ws) = λπ̄ s
a (x

a, ws)+ (1 − λ)π̄ s
b (x

b, ws)

satisfies π̄s∗ ∈ �̄s . Convexity of (3.16) then implies:

V̂s(λxa + (1 − λ)xb)

≤ Ê Js(λxa + (1 − λ)xb, π̄ s∗(λxa + (1 − λ)xb, ws),ws)

= Ê Js(λxa + (1 − λ)xb, λπ̄ s
a (xa, w

s )+ (1 − λ)π̄ s
b (xb, w

s),ws)

= 1
κs

κs∑
i=1

Js(λxa + (1 − λ)xb, λπ̄ s
a (xa, w

s
i )+ (1 − λ)π̄ s

b (xb, w
s
i ),w

s
i )

= 1
κs

κs∑
i=1

Js(λxa + (1 − λ)xb, λua
i + (1 − λ)ub

i , w
s
i )

≤ 1
κs

κs∑
i=1

λJs(x
a, ua

i , w
s
i )+ (1 − λ)Js(x

b, ub
i , w

s
i )

= 1
κs

κs∑
i=1

λJs(x
a, π̄ s

a (xa, w
s
i ),w

s
i )+ (1 − λ)Js(x

b, π̄ s
a (xb, w

i
s),w

s
i )

= λV̂s(x
a)+ (1 − λ)V̂s(x

b)

for all x a, xb ∈ Rn and λ ∈ (0, 1).

The result presented in lemma 3.4.3 makes it possible to derive an efficient algorithm
for minimization of the empirical mean in (3.17). The minimization of the convex
empirical mean (3.17) in this algorithm utilizes a convex optimization technique, for
example a bisection algorithm.

The algorithm for solving 3.2.3 can now be derived following the dynamic program
(3.19). We start by choosing κ and the length of the control horizon N . With the
disturbance sampled as described before we obtain κ N samples of the disturbance w.
Each of these samples give rise to the one predicted state trajectory. Therefore, at each
s, s ∈ {0, · · · N − 1} there are κ s possible states denoted by x i

N (s), i ∈ {1, · · · , κ s}.
In the following we present the algorithm.
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Algorithm 3.1

Step 1: Initialization
Take the measurement xt and set x1

N (0) = xt . Set ûi (s) = 0 for s = 0, 1, . . . , N ,
i = 1, . . . , N . Draw κN samples for w as described before. Set V = ∞. Set
accuracy parameter ε. Set s = N .

Step 2: Compute cost at the end of the horizon
Determine a new û i (N) using (3.14) for each x i

N (N), i = 1, . . . , κN . Compute

V̂N (xi
N (N)) for each i . Set s = N − 1.

Step 3: Compute cost ”to go”
Determine a new û i (s) by solving (3.19) for each x i

N (s), i = 1, . . . κ s . Compute

V̂s(xi
N (s)) for each i . If s = 0 go to step 4, otherwise set s = s − 1 and go to step

3.

Step 4: Exit condition
If |V̂0(x1

N (0))− V | < ε stop. Otherwise: set V = V̂0(x1
N (0)) and go to step 2.

The relation of the solution obtained by algorithm 3.1 and the original problem 3.2.3
is described in the following theorem.

Theorem 3.4.4 Assume Dz is injective. For any initial condition x ∈ R
n , and for all

s = 0, · · · , N , the empirical optimal cost to go V̂s(x), defined in (3.17), converges
with probability 1 to the optimal cost Vs(x), defined in (3.11), whenever κ → ∞. In
particular, V̂0(x) converges with probability 1 to V (x), defined in (3.5), as κ → ∞.

Proof: We will establish this result recursively. First, we consider s = N . In this
case, we have:

V̂N (x) = inf
u
Ê

(
‖Cz x + Dzu‖2 + ‖Ax + Bu + Ew‖2

Q

)
.

Since Dz is injective the function we want to minimize on the right hand side is strictly
convex in u and grows at most quadratically in x . Then, it follows ( [112], theorem 24,
p.p.25) that for any εN > 0 and δN ∈ (0, 1) there exists κ∗

N such that for any κ > κ ∗
N

we have with probability (1 − δN ) that:∣∣∣V̂N (x)− VN (x)
∣∣∣ ≤ εN‖xN‖2.

Next assume that for any εt > 0 and δt ∈ (0, 1) there exists κ∗
t such that for any

κ > κ∗t we have with probability (1 − δt ) that:∣∣∣V̂t (x)− Vt (x)
∣∣∣ ≤ εt‖x‖2
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for some t ∈ (s, N]. We have

V̂t−1(x) = inf
ut−1

Ê

(
‖Cz x + Dzu‖2 + V̂t (Ax + Bu + Ew)

)
.

But this yields that:

V̂t−1(x) ≤ inf
u
Ê
(‖Cz x + Dzu‖2 + V̂t (Ax + Bu + Ew)

+ εt‖Ax + Bu + Ew‖2)
and similarly we can obtain the lower bound:

V̂t−1(x) ≥ inf
u
Ê
(‖Cz x + Dzu‖2 + V̂t (Ax + Bu + Ew)

− εt‖Ax + Bu + Ew‖2).
On the other hand,

Vt−1(x) = inf
u
Ê
(‖Cz x + Dzu‖2 + V̂t (Ax + Bu + Ew)

)
. (3.27)

We know that Vt (x) grows at most quadratic in x and is convex. The latter makes the
right hand side of (3.27) strictly convex since D z injective implies that the first term
on the right hand side is strictly convex. This implies that again we can be sure that
changing the expectation into an empirical mean has, with arbitrary large probability,
a negligible effect. In other words, we find that for any ε t−1 > 0 and δt−1 ∈ (0, 1)
there exists εt > 0, δt ∈ (0, 1) small enough and κ ∗

t−1 > κ∗t such that for any κ > κ ∗
t−1

we have with probability (1 − δt−1) that:∣∣∣V̂t−1(x)− Vt−1(x)
∣∣∣ ≤ εt−1‖x‖2.

Hence by using this recursion we establish that for any ε s > 0 and δs ∈ (0, 1) there
exists κ∗s such that for any κ > κ ∗

s we have with probability (1 − δs) that:∣∣∣V̂s(x)− Vs(x)
∣∣∣ ≤ εs‖x‖2

This clearly implies V̂s(x) converges with probability 1 to the optimal cost V (x s) if
κ → ∞. After all, for any fixed δ and ε we can choose κ large enough such that for
fixed x : ∣∣∣V̂s(x)− Vs(x)

∣∣∣ ≤ ε

with probability at least (1 − δ).

Finally, note that (3.11) coincides with (3.5) for the case s = 0.

Theorem 3.4.4 states that the empirical optimal cost to go (3.17) converges in proba-
bility to the optimal cost. This does not mean that the optimal controller derived by
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minimizing the empirical cost converges in probability to the optimal controller, how-
ever. Note that our design only determines the controller in certain states determined
by the drawn samples. For other states the controller is not defined. Note however
that, in a receding horizon framework, we only apply the first input which depends
on the current state which is fixed. Future states are unknown due to the stochastic
disturbance. Hence we might end up in a state for which the controller is not defined.
But since the control action over the full optimization horizon beyond the first step are
never implemented in a receding horizon scheme this does not constitute a problem.

If we want to actually determine a controller over the full optimization horizon then
we should interpolate the states generated by the sampled disturbances. Since the
optimization is strictly convex for Dz injective we know that the optimal controller
will be differentiable with a bounded derivative (a bound can actually be computed a
priori). Using that we can compute with arbitrary accuracy the controller on a compact
subset of the space. The probability that the state gets outside of this compact set can
be made arbitrarily small and therefore how we choose our input in these cases has
only a negligible effect on the cost.

With algorithm 3.1, the optimization problem 3.2.3 can be solved approximately but
with an arbitrary high accuracy. The accuracy of the solution depends on a number
of samples of the disturbance w taken for computing the empirical mean. The draw-
back of the algorithm is the high computational complexity. The number of points in
which an empirical mean has to be evaluated grows exponentially with the horizon.
The value of the algorithm is in its ability to access the information about achievable
performance when one aims to control the plant (3.1), subject to the input constraints
and the stochastic disturbance.

The exponential growth in the number of evaluating points is not necessary for the
algorithm to work. It is a consequence of a fixed number of disturbance samples κ

used for evaluating the empirical mean. It can be expected that the accuracy by which
one estimates the empirical optimal cost “to go” for time instants s in the horizon fur-
ther away from s = 0 does not have a significant effect on the overall performance
of the algorithm. Thus, the number of samples can be smaller for those time instants.
However, we have no proof of this. It is the reason we do not give explicit bounds
for the number of samples needed. The estimates available in the literature are ex-
tremely conservative and all experiments we tried show that we can get away with
much smaller numbers (often, by a factor of more that million).

An interesting possibility is to use a neural network (see [66]) as an approximation
for the nonlinear map π ∗

0 . Neural networks have been used as approximations for the
predictive controllers with constraints (see [70]). Two important issues arise in a de-
sign of a neural network for the approximation of the controller (3.6). The first one is
the choice of an appropriate structure for the neural network. The second issue is the
training of the neural network. To obtain a training set one needs an algorithm, such
as the one described in this chapter, to obtain pairs of initial states and corresponding
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optimal inputs. Although an initial training of the neural network, based on the algo-
rithm given in this chapter, could be time consuming, once the network is trained it
can be used for a fast on-line implementation of the controller (3.6). Note however,
that a neural network would still be only an approximation of the nonlinear function
π∗

0 unless the number of neurons is very high. The algorithm in this chapter will en-
able us to evaluate the gap between the optimal performance and the performance of
a neural network.

3.5 Algorithm 3.2: A computationally less demanding
solution

The computational burden involved in algorithm 3.1 can be reduced by trading ac-
curacy against computational load. This can be done by fixing a class of feedback
control laws in the optimization problem (3.2.3) rather than optimizing over a general
feedback map.

The class of feedback laws that we propose in this section is the class of a linear
feedback with saturation. At each time instant of the control horizon we assume that
the feedback relation between the predicted state and the input over the horizon is
given as:

u(k) = σ (FxN (k)) k ∈ T (3.28)

where σ is a saturation function that achieves that σ(u) ∈ U for all u ∈ R
m according

to

σ(u) =
{

u if u ∈ U
arg minv∈U ‖u − v‖2 if u /∈ U

and F is a linear feedback control law F : Rn → R
m .

With the feedback (3.28), we consider the cost function of the form:

Jfb(xt , F, wN ) :=
∑
k∈T

‖Cz xN (k)+ Dzσ (FxN (k)) ‖2 + ‖xN (N + 1)‖2
Q .

The following optimization problem is considered.

Problem 3.5.1 Given a fixed state measurement x t at time t ∈ Z+ find a linear feed-
back control law F ∗

t such that

E J (xt , F∗
t , wN ) ≤ E J (xt , F, wN ) ∀F : Rn → R

m .
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In addition, determine the optimal cost given by:

Vfb(xt ) := inf
F
E Jfb (xt , F, wN ) (3.29)

If F∗
t exists, then the receding horizon controller, obtained by solving the optimization

problem 3.5.1, is given by:

u(t) = F∗
t xt (3.30)

where t ∈ Z+. That is, only the first time sample is fed to the plant.

Unlike the receding horizon controller (3.6) the feedback control law (3.30) is time
varying. As in the optimization problem 3.2.3, it is very difficult to obtain an analyt-
ical expression for the expectation in (3.29). In this section we propose an algorithm
for solving optimization problem 3.5.1 that uses an empirical mean instead of the ex-
pectation. The empirical mean is computed by using randomly chosen samples of the
disturbance wN . The sampling procedure is different from the one described in sec-
tion 3.4. The feedback structure in (3.28) is time invariant and finitely parameterized,
therefore there is no need for dynamic programming and consequently, there is no
need for an exponential growth in the number of samples of the disturbance over the
horizon.

For the control horizon T of the length N we choose a number κ of disturbance sam-
ples at each k ∈ T . The number of samples of wN is then κN . We denote those
samples as wi

N , i ∈ {1, · · · , κN}. With the disturbance sampling as described, the
empirical mean is given as:

Ê JF (xt , F, wN ) := 1

κN

κN∑
i=1

JF (xt , F, wi
N ) (3.31)

It is easy to see by using (3.10) that the empirical mean (3.31) converge in probability
to its true mean.

The algorithm for a solution to the optimization problem 3.5.1 follows.

Algorithm 3.2

Step 1: Initialization
Take the measurement xt . Draw κ samples for w according to the distribution of
w. Set V0 = ∞. Set accuracy parameter ε. Set F = FL Q where FL Q is the
solution of the unconstrained infinite horizon LQ problem for the system (3.1):

FL Q = −(DT
z Dz + BT P B)−1 BT P A
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where P = PT ≥ 0 is the solution of:

P = AT P A + CT
z Cz − (AT P B + CT

z D)

× (BT P B + DT
z Dz)

−1(BT P A + DT
z Cz)

Step 2: Compute the cost
Compute (3.31).

Step 3: Exit condition
If ‖Ê JF (xt , F, wN )−V0‖ < ε set F∗

t = F and stop. Otherwise: set the temporary
cost V0 = Ê JF (xt , F, wN ) and update F according to the numerical algorithm that
has been chosen for the numerical minimization of (3.31). Go to step 2.

The input of the plant at some time t ∈ Z+ is then computed according to (3.30) and
in the next time instant computations in algorithm 3.2 are repeated.

The optimization problem 3.5.1 is not a convex one. Therefore, the result computed
by algorithm 3.2 can be a local minima. In this case a careful choice of an initial
“guess” for F in the algorithm is crucial for performance. We choose the solution of
the unconstrained infinite horizon LQ problem as the starting point in the optimization.
This choice is motivated for the following reason. With a disturbance with mean zero
and a small variance acting on the plant, initial states close to the origin, i.e. in the
states for which a saturation of inputs is not likely to occur and the N sufficiently large,
the optimal F for optimization problem 3.5.1 will be close to F L Q . On the other hand,
for states far from origin the saturation dominates the performance and the value of
the computed F only determines a direction of the optimal input.

We would like to stress the fact that algorithm 3.2 computes the optimum with high
accuracy. Therefore, we can evaluate simplifications of this scheme which reduce
the computational time and show to what extent performance has been compromised.
The parameterization of control laws which we suggest in this chapter is a simple
one. If performance loss in this scheme turns out to be too large for a specific ap-
plication, we may consider more elaborate parameterizations of control laws such as
an optimization over a vector of saturated linear feedbacks over the control horizon
(σ (Fk xN (k)))N

k=0, Fk : Rn → R
m .

3.6 Numerical examples

3.6.1 A single input example

In this subsection we present a very simple example in which we considered a second
order plant with a Gaussian white noise disturbance. With the growth of the con-
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trol horizon, the number of disturbance samples grows. There are several ways to
overcome the problem of an excessive number of samples with a large horizon. One
possible approach is to reduce the number of samples toward the end of the control
horizon. The “empirical reasoning” behind this idea is that, because of the receding
horizon paradigm, only the first element in the vector of computed control laws is
implemented and we use a large number of the disturbance samples where the largest
accuracy is needed.

We consider the plant with the model of the form (3.1) with:

A =
[

0.7326 −0.0861
0.1722 0.9909

]
B =

[
0.0609
0.0064

]

E =
[

0.5
0

]
Cz =


0 0

1 0
0 1


 Dz =


0.1

0
0




See [13] and [18]. For each time instant t ∈ Z+, the stochastic disturbance w(t) is
assumed to be uniformly distributed on the interval [−α, α] where α is chosen in the
set {0.5, 1, 1.5} and for k �= j , w(k) and w( j) are independent stochastic variables.

Our aim is to regulate the system in the origin (disturbance rejection) while fulfilling
the following constraint on the input:

−2 ≤ u(t) ≤ 2 t ∈ Z+

As an indication of the achieved level of disturbance rejection we consider the vari-
ance of the system state. We compare the disturbance rejection performance of three
different receding horizon controllers. The first one, named RHC1 is based on al-
gorithm 3.1, section 3.4. The receding horizon controller RHC2 is based on algo-
rithm 3.2, section 3.5. Finally, RHC3 is the receding horizon controller based on the
standard MPC design (see Remark 3.2.5, Section 3.2).

All controllers are designed over a control horizon of length N = 10. For RHC1 and
RHC2, the number of disturbance samples is set to 10 for the first and the second time
instant in the control horizon and 5 for the third time instant in the control horizon.
The accuracy parameter ε is set to ε = 0.01 in both algorithms. Algorithms have
been coded in Matlab. Note that actual computation time critically depends on the
simulation software that has been used. For the purpose of a comparison, the fact
that the average computation time is reduced by a factor 8 with algorithm 3.2 is more
interesting. Simulations are performed over an interval of 200 time units. Results are
summarized in tables 3.1 and 3.2.

As expected, the variance is the largest when a classical MPC controller (RHC3) is
applied. The performance loss of the system controlled by RHC2 and RHC3 are ex-
pressed as the relative increase of the variance with respect to the system controlled
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Table 3.1: Variance of the state

α 0.5 1 1.5

RH C1 0.0233 0.1158 0.2981

RH C2 0.0288 0.1163 0.2995

RH C3 0.0289 0.1293 0.3133

Table 3.2: Performance loss

α 0.5 1 1.5

RH C2 0.5 % 0.5 % 0.5 %

RH C3 0.5 % 13.5 % 5.1 %

by RHC1 and given in table 3.2. When the level of the disturbance is small as in the
case α = 0.5, the performances are comparable. For small α, the constraints are not
dominating the performance and all controllers yields approximately the same perfor-
mance. For disturbance levels α = 1 and α = 1.5, the performance losses of RHC2
are significantly smaller then the losses of the standard MPC controller (RHC3). Note
that a further increase of α will result in a behavior of the controlled system dominated
by the disturbance, because of the constrained input.

3.6.2 A multi-input example

We consider the plant with the model of the form (3.1) with:

A =
[

0.98676 0
0 0.98676

]
B =

[
0.011629 −0.011444
0.014331 −0.014517

]

E =
[

1
0

]
Cz =


0 0

1 0
0 1


 Dz =


0.1 0

0 0.1
0 0




The input to the plant u is assumed to be constrained for all t ∈ Z+ within the set U
defined by

U := {u ∈ R2 : Au ≤ bu}
with:

Au =



−1 0
0 −1
1 0
0 1


 bu =




1
1
1
1


 .
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The plant is the discretized version of the ill-conditioned distillation column model
from [133], used also in [83]. The model is linear and therefore a very crude approxi-
mation of the distillation column dynamics but its gain is strongly dependent on the in-
put direction which is an essential characteristic of ill-conditioned plants. Our aim is to
regulate the system to the origin from a given initial state x = [x a xb]T = [0.1 0.1]T .

Here, two model predictive controllers are compared, a controller based on algo-
rithm 3.1 (stochastic MPC), section 3.4 and a controller based on the standard MPC
algorithm (standard MPC).

The standard MPC controller (see section 3.2, remark 3.2.5) is based on the assump-
tion that the disturbance over the control horizon is equal to its expected value i.e.
zero, and on the optimization in the open loop. The length of the control horizon is set
to N = 10. When there is no stochastic disturbance (w = 0), the standard MPC con-
troller achieves satisfactory results when applied to the plant (see figure 3.1). From the
results shown on figure 3.1, it can be observed how gain of the plant strongly depends
on the direction of the input.

Next, we consider the disturbance w which is assumed to be a Gaussian white noise
i.e. the disturbance w is a stochastic process with w(k) ∈ N (0, 0.2) where N (0, 0.2)
denotes a normally distributed random variables with zero mean and variance 0.2 and
for k �= j , w(k) and w( j) are independent stochastic variables.

The stochastic MPC controller is based on the optimization in closed loop and sam-
pling of the stochastic disturbance. The length of the control horizon is set to N = 10
as in the standard MPC controller. We use a different number of disturbance samples
at different time instants of the horizon. For s = 0 we use 15 samples of the dis-
turbance for s = 1 10 samples, for s = 2 we use 5 samples. For 2 ≤ s ≤ 10 the
disturbance is kept fixed and equal as the disturbance in s = 2. Thus, the number of
samples the disturbance is equal to 750.

For both standard MPC controller and stochastic MPC controller we perform 150
Monte Carlo experiments, each one of them with a different realization of the white
noise disturbance w. As a result, 150 state trajectories for each controller are obtained.
Since stochastic properties of the state is in focus of attention, we compute the em-
pirical mean and the empirical variance of 150 trajectories at each time step t . The
empirical mean shows central tendency of the state and the empirical variance is a
measure of the “dispersion” of the state. It is obvious that a controller that achieves
a smaller empirical variance and “keeps” the empirical mean of the state closer to the
origin will perform better.

Results are presented on figure 3.2 for the standard MPC controller and on figure 3.3
for the stochastic MPC controller. The empirical mean of trajectories shown on figure
3.2 clearly shows that the standard MPC controller does not stabilize the plant when
the stochastic disturbance is present. Simulations with larger control horizons and/or
different matrices Cz , Dz and Q have the same result. The essential problem with the
standard MPC in this example is not to find a suitable values of “tuning parameters”
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Figure 3.1: Standarad MPC applied to the ill-conditioned plant with disturbance w =
0
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Figure 3.2: Standard MPC applied to the ill-conditioned plant subject to a Gaussian
white noise disturbance

(the length of the control horizon, end point penalty, weights in the state and the
input) but in inability of the optimization in open loop to capture the true nature of
the stochastic disturbance. The empirical variance of state trajectories shown on the
figure 3.2 is approximately 45 times larger than the variance of the disturbance which
indicates very poor disturbance rejection performance.

The empirical mean and the empirical variance of state trajectories obtained when the
plant is controlled by stochastic MPC show a significant improvement in performance,
compared with standard MPC. The central tendency of the state converges to zero and
the variance of the state is approximately 20 times smaller than the variance of the
disturbance, which shows not only that stochastic MPC stabilizes the plant but also
has good disturbance rejection performance.
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Figure 3.3: Stochastic MPC applied to the ill-conditioned plant subject to a Gaussian
white noise disturbance

3.7 Conclusion

A constant increase in computing speed and power allows us to explore more elab-
orate algorithms for predictive control, with the benefit of an increased performance
compared to standard schemes.

In this chapter we presented two algorithms for the design of model predictive con-
trollers. Algorithms incorporate the effect of (stochastic) disturbances and constraints
on the input. The optimization that arises from the problem formulation is difficult to
solve analytically. By exploiting structural properties of the problem, its convexity in
the first place, we developed an algorithm by which the optimization problem can be
solved with an arbitrary accuracy. The algorithm is computationally demanding but
serves as a tool for assessing the achievable performance when one aims to control a
plant subject to (stochastic) disturbances and constraint on the input. Also, the algo-
rithm can be used for off-line training of a neural network. The computational burden
involved can be reduced in various ways. A reduction in computational complexity is
always achieved at the expense of some performance loss, however. One possibility is
to choose a class of feedback laws over which the optimization has to be performed.
A class of saturated linear feedback laws is proposed in this chapter as a possibil-
ity. The second algorithm presented in section 3.5 is based on this assumption. As
shown by two numerical examples, the performance loss is marginal when the second
algorithm is used but the reduction in computation time is significant. In the exam-
ples, both algorithms perform better than a standard MPC controller designed under
an assumption that the disturbance over the control horizon is equal to its expected
value. The difference in performance is larger in the second example where we use an
ill-conditioned plant, notoriously difficult to control.



Page 75 of 155

4

Model predictive control for stochastic
systems with state and input constraints

In this chapter we consider an optimal control problem for constrained stochastic sys-
tems and propose a solution concept that is based on model predictive control tech-
nique. A part of this chapter has been presented at the Conference on Decision and
Control 2002 [14].

4.1 Introduction

In an industrial environment, the ability of a control system to efficiently deal with
constraints is of increasing importance. The reason is that the most profitable opera-
tion of the industrial plant is often obtained when the process is running at a constraint
boundary (see [91]). It is often claimed that the increasing popularity of Model Pre-
dictive Control (MPC) in industry stems from its capability to allow operation closer
to constraint boundaries, when compared with conventional control techniques. When
disturbances are acting on the plant, then it is evident that the better the control sys-
tem is dealing with disturbances the closer one can operate the plant to the constraint
boundaries.

When disturbances acting on the plant have stochastic nature, the classical MPC set-
ting is faced with a difficulty. The difficulty with a stochastic disturbance in MPC is
that the predicted behavior and the actual behavior of the plant can differ significantly.
The standard, convex optimization in open loop does not take the difference into ac-
count between actual and predicted behavior of the plant. As a consequence, questions
related to achievable performance can not be addressed properly, while the optimiza-
tion criterion largely ignores the true characteristics of the plant. Hence the input is
chosen on the basis of a criterion which does not reflect the true characteristics of the
plant. This may suggest that optimization in closed-loop would be feasible alternative.
However, as we will see in this chapter, when a controller is designed in closed loop,
constraints make a minimization of the expected value of the cost function over the
horizon a very difficult optimization task.

In Chapter 3 we presented a stochastic disturbance rejection scheme for linear, dis-
crete time systems with constrained inputs. The disturbance rejection scheme is based
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on model predictive control techniques which utilize a randomized algorithm which
minimizes an empirical mean of the cost function. The optimization at each step is a
closed loop optimization. Therefore, it takes the effect of disturbances into account.
Because we do not impose any a priori parameterization of the feedback laws over the
horizon, the algorithm is computationally demanding but it gives a reliable measure
of the achievable performance.

In this chapter we extend this research further. The system that we consider is a linear,
time invariant, discrete time system with constraints on the input and the state, subject
to a stochastic disturbance. We pose our problem as an optimal control problem with
a cost function that is not necessarily quadratic and discuss possible approaches to the
optimal control problem for the system with stochastic disturbances and constraints on
the state and the input (section 4.2). Because of the stochastic nature of the problem,
the penalty on the state constraint violation can not be made arbitrary high. We derive
a condition on the growth of the state violation cost that has to be satisfied for the
optimization problem to be solvable (section 4.3).

In section 4.4 we design a model predictive controller to deal with the optimal control
problem of the stochastic system with state and input constraints. The controller is
obtained by a receding horizon, convex optimization in closed loop. In section 4.5
we present an algorithm to implement the controller. The algorithm is based on the
empirical mean that is computed by use of a number of samples of the disturbance.
The accuracy of the algorithm is arbitrary large depending on the length of the control
horizon and the number of samples taken to compute the empirical mean. It is shown
that the solution obtained by the algorithm converges in probability to the model pre-
dictive controller designed in section 4.4.

Finally, in section 4.6 we present an example in which we use the controller designed
in this chapter on the problem of steering a cart with a constrained input to the pre-
scribed position, with an additional condition of minimizing the probability of the
“overshoot” in the state trajectory.

4.2 Optimal control of constrained stochastic systems

We consider a linear, time-invariant plant subject to stochastic disturbances. The plant
is described by the following state space model:

x(t + 1) = Ax(t) + Bu(t) + Ew(t)
z(t) = Cz x(t) + Dzu(t)

(4.1)

where u is the control input with u(t) ∈ U ⊆ R
m and x is the state with x(t) ∈

R
n . The set U is a not necessarily bounded, closed, convex set which contains an

open neighborhood of the origin. The second equation describes the controlled output
z with z(t) ∈ R

p . Finally, the disturbance w is a stochastic process with w(t) ∈
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N (0, Qw) where N denotes a family of normally distributed random variables with
zero mean and covariance matrix Qw ∈ R

l×l . Moreover, for k �= j , w(k) and w( j)
are independent. Thus, the disturbance w is a Gaussian white noise.

Matrices A, B, E , Cz and Dz are matrices of suitable dimensions with real elements.
It is assumed that the matrix pair (A, B) is stabilizable and the matrix pair (A,Cz)

observable. We assume that the state of the plant is measured.

The system (4.1) is controlled by a static feedback controller i.e. at each t , the input
u(t) is a function of the state x(t). The class of controllers � that we consider is the
set of continuous maps ϕ : Rn × Z+ → U that map the origin of the state space into
the zero input

ϕ (0, t) = 0 for all t ∈ Z+.
Thus, we have

u(t) = ϕ (x(t), t) (4.2)

for some ϕ ∈ � . Starting at time t = 0, the state x and the output z are stochastic
processes generated by (4.1) with the input (4.2).

We consider a linear, time invariant system that is subject to the stochastic disturbance,
with state constraints and a constrained input. It is well known, that a constrained input
limits our ability to control the linear plant. To approach this in more formal way, set
w = 0 in (4.1) and consider the system:

x(t + 1) = Ax(t) + Bu(t) u(t) ∈ U. (4.3)

Suppose that at time t = 0 system (4.3) has an initial state x(0) = x 0. The initial
condition x0 ∈ R

n is a null controllable point if the condition in the definition 3.2.1
is satisfied for the initial state x0. All null controllable points define a set in the state
space which is known as the recoverable set, here denoted as X. In general, the re-
coverable set is a subset of the state space. If U is bounded then the recoverable set
contains all points in the state space if and only if the matrix pair (A, B) is stabiliz-
able and all eigenvalues of the system matrix A lie on or inside the unit circle in which
case we say that the system (4.3) is globally asymptotically stabilizable (see [125] for
details when U is bounded). Thus, the following assumption is natural when one deals
with the stabilization of a linear system, subject to input constraints and unbounded
disturbances.

Assumption 4.2.1 The system (4.1) is globally asymptotically stabilizable. As a con-
sequence X = R

n .

Next, suppose that constraints on the state x define a convex, closed set X ⊆ R
n

that contains the origin in its interior. The output z is used to measure performance.
Our objective is to control plant (4.1) from an initial state to the origin in such a way
that the size of the controlled output z is as small as possible while x(t) ∈ X and
u(t) ∈ U for all t ≥ 0. Our performance measure, usually called the cost, is a convex
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function of the output z. A number of efficient algorithms exist to minimize a convex
function. However, the dynamic structure of the problem makes this optimization far
from trivial. The controlled output z is a stochastic process because it depends on the
stochastic disturbance w. Thus, we consider the following performance measure for
system (4.1):

P(x0, ϕ) := lim
T→∞ E

1

T

T∑
t=0

g (z(t)) ϕ ∈ �, x0 ∈ X. (4.4)

where:
x(t + 1) = Ax(t) + Bϕ(x(t), t) + Ew(t) x(0) = x0

z(t) = Cz x(t) + Dzϕ(x(t), t)

and where E denotes expectation. The function g : R p → R+ is a strictly convex
function with g(0) = 0. Note that z is a linear function in x and u and therefore the
composite function g is strictly convex in x and u.

The main optimizaton problem is stated in the following problem formulation.

Problem 4.2.2 Suppose that at time t = 0 system (4.1) has an initial condition x(0) =
x0, x0 ∈ X∩X. Under assumption 4.2.1, find an optimal controller ϕ ∗ ∈ � such that:

x(t) ∈ X, u(t) ∈ U (4.5)

for all t ∈ Z+ and
P(x0, ϕ

∗) ≤ P(x0, ϕ)

for all other controllers ϕ ∈ � which guarantee (4.5). In addition, determine the
optimal cost:

P∗(x0) := inf
ϕ∈�

{
P(x0, ϕ)

∣∣ (4.5) holds for all t ∈ Z+
}
.

Problem 4.2.2 is a stochastic, optimal control problem with constraints on the state
and the input. No constraint violation is allowed and the problem resembles what is
known as the hard constraint approach. The main difficulty with the problem 4.2.2 is
that the set of admissible initial conditions{

x0 ∈ X
∣∣ P∗(x0) < ∞

}
(4.6)

is almost always empty for a Gaussian white noise disturbance w. An empty set of
admissible initial conditions implies that problem 4.2.2 is unsolvable. The reason is
that the Gaussian white noise is an unbounded disturbance and it is always possible
to find a realization of the disturbance w that violates the conditions (4.5), for any
x0 ∈ X and ϕ ∈ � . In the case that the disturbance is bounded, the set of admissible
initial conditions (4.6) can be very small, which is too restrictive in many practical
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applications. This is an inherent difficulty with the hard constraint approach (prob-
lem 4.2.2). The only way to overcome this difficulty is to allow certain performance
degradation i.e. to allow constraint violation. The performance degradation should be
kept as small as possible.

In this chapter, we propose an approach for dealing with constraints on the state of
stochastic systems. An optimal controller should control the plant optimally with re-
spect to the performance measure (4.4) while keeping the state in the constraint set X
“as much as possible”. When the state is in the set X the performance measure (4.4)
determines the performance. When there is a probability of a constraint violation, the
performance of the system is determined by an additional cost that will penalize the
constraint violation. In this way, we have two different objectives for control: min-
imizing the performance measure (4.4) and minimizing the probability of constraint
violation.

In the paper [87], the probability of the constraint violation is explicitly incorporated in
the problem formulation and a model predictive algorithm is proposed to deal with the
plant with constraints on the state and stochastic disturbances. The optimization over
the control horizon is performed in open loop. The variance of the state is significantly
larger when control is in open loop, when compared to the variance of the state when
control is in closed loop.

In our setting, the task of minimizing the constraint violation is accomplished by an
additional cost that will penalize constraint violation.

Definition 4.2.3 The constraint violation cost is a convex function h : R n → R+ ∪
{∞} with h(x) = 0 for all x ∈ X.

The state x depends on the stochastic disturbance w and is therefore stochastic itself.
We consider the expected value of the constraint violation cost. The performance
measure (4.4) and the expected value of the constraint violation cost are added in the
cost function to reflect both requirements:

J̄ (x0, ϕ) := lim
T→∞ E

1

T

T∑
t=0

{
g
(
Cz x(t)+ Dzϕ(x(t), t)

) + h
(
x(t)

)}
. (4.7)

Consider the following optimization problem:

Problem 4.2.4 Given an initial condition x 0 ∈ X, find an optimal controller ϕ̃ ∈ �

such that
J̄ (x0, ϕ̃) ≤ J̄(x0, ϕ)

for all ϕ ∈ � . In addition, determine the optimal cost given by:

V̄ (x0) := inf
ϕ∈� J̄(x0, ϕ). (4.8)
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The optimization problem 4.2.4 is an optimal control problem of a linear discrete time
system subject to stochastic disturbances and only constraints on the input. The con-
straints on the state have been incorporated implicitly by the modified cost function.

The constraint violation cost introduces an additional degree of freedom in the design
of an optimal controller for the system (4.1). It determines the strategy in dealing with
the state constraints. A choice:

h (x) = 0, x ∈ R
n

would imply an optimal control problem without constraints on the state. Setting h to
be:

h (x) =
{

0 if x ∈ X

∞ if x �∈ X
(4.9)

makes problem 4.2.4 identical to problem 4.2.2 i.e. the hard constraints approach.
In between these two extreme cases there is a large number of choices to tailor the
cost (4.7) for the application at hand. Note however, that any choice that will make
the constraint violation cost infinite in some point even for large x will make the set
of admissible initial conditions (4.6) almost always empty, when disturbances are not
bounded. The following assumption is therefore necessary.

Assumption 4.2.5 The constraint violation cost h is from the class of finite valued
convex functions i.e. h : Rn → R+ is convex with h(x) = 0 for all x ∈ X, instead of
h : Rn → R+ ∪ {∞}.

Assumption 4.2.5 is not very restrictive, simply because the growth of the constraint
violation cost h can be made almost arbitrary large with assumption 4.2.5 satisfied.
For example, consider the constraint violation cost that satisfies assumption 4.2.5 and
has an exponential growth away from the boundary of X

h(x) =
{

0 if x ∈ X
eγ d(x,X) − 1 if x �∈ X

(4.10)

where d(x,X) denotes the distance between x and the boundary of set X. With γ

large enough (4.10) can be made arbitrary large. Having a large γ will mean a tighter
control with respect to the state constraints and is therefore an advantage. In order
to compute cost (4.7) for a given initial condition and a given controller we need to
compute the expectation of the function of the stochastic state. In general, when w is
unbounded expectation does not need not to be finite for all initial conditions in X and
an arbitrary controller ϕ ∈ � even if the constraint violation cost h is as in assumption
4.2.5. For example, if the constraint violation cost h is as in (4.10) then an question
is for which γ the optimization problem 4.2.4 still yields a finite cost for all initial
conditions in X and all ϕ ∈ � .
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The answer to the question above can be deduced from the conditions that are pre-
sented in the following section. They relate the growth of the constraint violation cost
h and the decay of the probability density function of the disturbance. That is, we
wish to investigate the relation between the growth of the constraint violation cost h
and the probability density function of the disturbance that will yield finite optimal
cost (4.8) for all x0 ∈ X.

4.3 Solvability conditions

Before presenting results in this section, we rewrite the cost (4.7) in more compact
form as

J̄ (x0, ϕ) := lim
T→∞ E

1

T

T∑
t=0

j
(
x(t), ϕ(x(t), t)

)
(4.11)

where x is the state that is generated recursively by (4.1) with the disturbance w and
the input u given by (4.2) starting at t = 0 with an initial condition x 0 ∈ X. The
function j is defined as:

j
(
x, u

) := g
(
Cz x + Dzu

)+ h(x) x ∈ Rn u ∈ U. (4.12)

As already mentioned in section 4.2, the state violation cost h determines the strategy
in dealing with the state constraints. The constraint violation cost is defined in defini-
tion 4.2.3 as a convex function of the state. We choose the constraint violation cost to
be an exponential function of the state. A possibility is for example (4.10). A precise
choice of the constraint violation cost has to be done based on the application at hand.
Note, however, that an exponential constraint violation cost (such as (4.10)) makes the
function j a function of exponential growth in x .

Next, we define a class of functions from which we choose the function j . This class
is a class of functions that have a so called “Polynomial - Exponential Growth”.

Definition 4.3.1 The class of functions �(R) with R ∈ R
n×n a positive semidefinite,

symmetric matrix is the class of all functions θ : Rn → R for which there exist
nonzero polynomials q and p such that:

q(x)e‖x‖2
R ≤ θ(x) ≤ p(x)e‖x‖2

R

for all x ∈ Rn . Here, ‖x‖2
R := 〈x, Rx〉.

The state of the system (4.1) is a stochastic process. Stochastic properties of the state
depend not only on the structure of the system (4.1) but also on the feedback from �

that is applied to the plant. For the problem 4.2.4 to be solvable, it is necessary that
the cost (4.11) is finite for at least one feedback from � . The cost will be finite if the
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expectation of the function j (x(t), ϕ(x(t), t)) ∈ �(R), where ϕ ∈ � and x is the
state of the system (4.1) is finite for all t = 0, 1, 2 · · · . Finiteness of this expectation
depends on the relationship between matrix R that defines the exponential growth of
the cost and the covariance matrix Qw .

We would like to characterize feedbacks that achieve a finite cost (4.11) with j (·, u) ∈
�(R) where x is the state of the system (4.1). To this aim we define an auxiliary
system as follows

xa(t + 1) = Axa(t) + Bϕ(xa(t), t) + Eξ(t) ξ(t) ∈ Rl (4.13)

with an initial condition x a(0) = x0 and ϕ ∈ � . Note that the structure of the
system (4.13) is the same as the structure of the plant (4.1). The difference is that
the disturbance w is a stochastic process and the disturbance ξ is assumed to be a
deterministic signal. As a consequence the state x is a stochastic process and the state
xa is a deterministic signal.

In general, feedbacks that achieve a finite cost (4.11) constitute a subset in � . We
denote this subset as �R and, for an easy reference, we give the definition first.

Definition 4.3.2 The set �R is the set of all feedbacks ϕ ∈ � such that for all t =
1, 2, 3 · · ·

‖xa(t)‖2
R − 1

2
‖ξ t−1‖2

� < 0 for all ξ t−1 ∈ R
l × R

t−1\" (4.14)

where " is a nonempty, bounded subset of R� × R
t−1 that contains zero, x a and ξ

satisfy (4.13) with an initial condition x a(0) ∈ X and where

‖ξ t−1‖2
� :=

t−1∑
i=0

‖ξ(i)‖2
Q−1

w
(4.15)

is the square of the weighted �2 norm of a vector valued real sequence ξ t−1 :=
(ξ(i))t−1

i=0 with ξ(i) ∈ Rl and ‖ · ‖2
Q−1

w

:= 〈·, Q−1
w ·〉.

The following result shows that the state generated by (4.1) and a feedback from � R

achieves a finite expectation for functions of x that are in the class �(R).

Lemma 4.3.3 Consider a state x generated recursively by the system (4.1) where
w ∈ (0, Qw) with an initial condition x(0) ∈ X and a feedback ϕ ∈ � R .

Next, consider a function f : Rn × R
m → R such that for every fixed u ∈ R

m

f (·, u) ∈ �(R).

Then,
E f (x(t), ϕ(x(t), t)) < ∞

for all t = 1, 2, 3 · · · .
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Proof: Assume that the system (4.1) with the initial condition x(0) is controlled
by u(t) = ϕ(x(t), t) with ϕ ∈ �R . The state of the system (4.1) at t , x(t), is given
by the recursion defined by (4.1) so it is a function of the initial condition x(0), the
disturbance up to t −1, denoted as w t−1 := (w(k))t−1

k=0, w(k) ∈ N (0, Qw), for k �= j ,
w(k) and w( j) are independent stochastic variables, and the input (ϕ(x(k), k))t−1

k=0.

The disturbance wt−1 is a finite sequence of independent, identically distributed ran-
dom variables. Therefore, the probability density function of w t−1 is simply:

fwt−1

(
ξ t−1) = t−1∏

i=0

fw(ξ(i)) ξ t−1 := (ξ(i))t−1
i=0, ξ(i) ∈ Rl (4.16)

where fw is the normal probability density function of the variable w ∈ N (0, Q w),
Qw ∈ Rl×l

fw(ξ) = 1

(2π)
�
2
√

det(Qw)
e−

1
2α(ξ) (4.17)

with ξ ∈ Rl and
α(ξ) := ‖ξ‖2

Q−1
w
.

The probability density function of w t−1 can be computed according to (4.16) as

fwt−1(ξ t−1) = 1

(2π)
�(t−1)

2
(

det(Qw)
) �

2

e−
1
2 ‖ξ t−1‖2

� (4.18)

where

‖ξ t−1‖2
� :=

t−1∑
i=0

‖ξ(i)‖2
Q−1

w

is the square of the weighted �2 norm of a vector valued real sequence ξ t−1. Next,
consider the expectation

E f
(
x(t), ϕ(x(t), t)

) = ∫
R�×Rt−1

f
(
xa(t), ϕ(xa(t), t)

)
fwt−1(ξ t−1) dξ t−1 (4.19)

where x a(t) is the state at t given by recursion (4.13) with the initial condition x a(0) =
x0.

Expectation (4.19) can be rewritten as

E f
(
x(t), ϕ(x(t), t)

) = ∫
"

f
(
xa(t), ϕ(xa(t), t)

)
fwt−1(ξ

t−1) dξ t−1

+
∫
R�×Rt−1\"

f
(
xa(t), ϕ(xa(t), t)

)
fwt−1(ξ t−1) dξ t−1 (4.20)

where " is a nonempty, bounded subset of R� × R
t−1 that contains zero.
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Because " is bounded, the first summand in (4.20) is always finite. We use (4.18) and
the assumption that f ∈ �(R) from the lemma to find an upper bound for the second
summand in (4.20).∫

R�×Rt−1\"
f
(
xa(t), ϕ(xa(t), t)

)
fwt−1(ξ t−1) dξ t−1 ≤

1

(2π)
�(t−1)

2
(

det(Qw)
) �

2

∫
R�×Rt−1\"

p
(
xa(t), ϕ(xa(t), t)

)
e‖xa(t)‖2

R e−
1
2 ‖ξ t−1‖2

� dξ t−1.

(4.21)

The upper bound in (4.21) is finite since the feedback ϕ achieves the condition (4.14)
i.e.

‖xa(t)‖2
R − 1

2
‖ξ t−1‖2

� < 0 (4.22)

for all ξ t−1 ∈ R
� × R

t−1\". Since the feedback ϕ achieves (4.22) for all t the
expectation (4.19) is finite for all t so

E f
(
x(t), ϕ(x(t), t)

)
< ∞ (4.23)

for all t = 1, 2, 3 · · · .
In the following theorem, we show that the optimization problem 4.2.4 is solvable if
the set �R is a nonempty set i.e. if exists at least one feedback that achieves condition
(4.14).

Theorem 4.3.4 Consider the optimization problem 4.2.4 for the system (4.1) with an
initial condition x0 ∈ X. In addition to assumptions 4.2.1 and 4.2.5 assume that for
every fixed u ∈ R

m

j (·, u) ∈ �(R). (4.24)

Then, V̄ (x0) < ∞ if the set �R for the system (4.1) with the initial condition x(0) =
x0 is a nonempty set.

Proof: Assume that the set �R is a nonempty set and that a feedback ϕ ∈ � R for
the system (4.1) with the initial condition x 0 exists and it is given. Consider the cost

J̄(x0, ϕ) = lim
T→∞ E

1

T

T∑
t=0

j
(
x(t), ϕ(x(t), t)

)
(4.25)

where x(t) is the state of the system (4.1) at time t , so it is a function of the initial
condition x(0) = x0, the disturbance up to t − 1 and the input u(k) = (ϕ(x(k), k)).



Page 85 of 155

4.3. Solvability conditions 81

Since j ∈ �(R) and ϕ ∈ �R , lemma 4.3.3 can be applied so

E j
(
x(t), ϕ(x(t), t)

)
< ∞

for all t . This implies that (4.25) is finite. Finally

V̄ (x0) ≤ J̄(x0, ϕ(x(t), t)
)
< ∞

which concludes the proof.

Results presented so far in this section, show that the optimization problem 4.2.4 is
solvable if there exists a feedback that satisfies condition (4.14). The results are de-
rived for the general case in which the set U is a closed, convex and not necessarily
bounded set which contains an open neighborhood of the origin. In this case, a set of
feedbacks that achieve (4.14) along the state trajectory of the system (4.1) is a subset
of the set � . The condition (4.14) is not easy to verify, however. At each t , it relates
a vector norm of the state at t , weighted with the matrix R and the � 2 signal norm of
the disturbance, weighted with the covariance matrix Q w.

From the application point of view, a very important case is the case in which U is a
bounded set. Fortunately, as it will be shown in the sequel, in this case the solvability
condition is equivalent to the algebraic condition

(
At E

)T
R
(

At E
)− 1

2
Q−1

w < 0

that has to be satisfied for all t = 1, 2, 3 · · · . This condition is easy to verify. Another
important point is that when this algebraic condition is satisfied every feedback in the
set � achieves a finite cost (4.11).

Theorem 4.3.5 Assume that B is an injective matrix. Then, � R �= ∅ if and only if U
is a bounded set and (

At E
)T

R
(

At E
)− 1

2
Q−1

w < 0 (4.26)

for all t = 0, 1, 2 · · · .

Proof: Assume that U is bounded and that condition (4.26) is satisfied for all t . To
prove the theorem we need to establish condition (4.14) which is equivalent to

∥∥∥At x0 +
t−1∑
i=0

Ai Bϕ(xi , i)+
t−1∑
i=0

Ai Eξ(i)
∥∥∥2

R
− 1

2

t−1∑
i=0

‖ξ(i)‖2
Q−1

w

≤
{∥∥At x0

∥∥
R+

∥∥∥ t−1∑
i=0

Ai Bϕ(xi , i)
∥∥∥

R
+
∥∥∥ t−1∑

i=0

Ai Eξ(i)
∥∥∥

R

}2− 1

2

t−1∑
i=0

‖ξ(i)‖2
Q−1

w
< 0.
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The second term in inequality above can be expanded as

2
∥∥At x0

∥∥
R

∥∥∥ t−1∑
i=0

Ai Bϕ(xi , i)
∥∥∥

R
+ 2

∥∥At x0
∥∥

R

∥∥∥ t−1∑
i=0

Ai Eξ(i)
∥∥∥

R
+

2
∥∥∥ t−1∑

i=0

Ai Bϕ(xi , i)
∥∥∥

R

∥∥∥ t−1∑
i=0

Ai Eξ(i)
∥∥∥

R
+ ∥∥At x0

∥∥2
R +

∥∥∥ t−1∑
i=0

Ai Bϕ(xi , i)
∥∥∥2

R
+

∥∥∥ t−1∑
i=0

Ai Eξ(i)
∥∥∥2

R
− 1

2

t−1∑
i=0

‖ξ(i)‖2
Q−1

w
< 0. (4.27)

Because U is bounded, for every x 0 ∈ X there exists at > 0 and bt > 0 such that∥∥At x0
∥∥

R ≤ at

and ∥∥∥ t−1∑
i=0

Ai Bϕ(xi , i)
∥∥∥

R
≤ bt

for every ϕ ∈ � .

Therefore, it is possible to upper bound left hand side in (4.27) and it is sufficient to
consider

∥∥∥ t−1∑
i=0

Ai Eξ(i)
∥∥∥2

R
− 1

2

t−1∑
i=0

‖ξ(i)‖2
Q−1

w
≤ −

(
ct + dt

∥∥∥ t−1∑
i=0

Ai Eξ(i)
∥∥∥

R

)
(4.28)

where
ct = (at + bt )

2 and dt = 2(at + bt ).

Observe that the left hand side of (4.28) is a quadratic form for all i and that the
right hand side grows at most linearly in ξ(i) for all i . Thus, it remains to show that
left hand side of (4.28) is a negative definite quadratic form under condition (4.26)
because then it is possible to find " ∈ R

� × R
t−1 such that (4.28) is satisfied for all

ξ t−1 ∈ R� × R
t−1\". Therefore, consider

∥∥∥ t−1∑
i=0

Ai Eξ(i)
∥∥∥2

R
− 1

2

t−1∑
i=0

‖ξ(i)‖2
Q−1

w
< 0.

The inequality above can be rewritten as




ξ0
ξ1
...

ξt−1




T

PT RP −




1
2 Q−1

w 0 · · · 0

0 1
2 Q−1

w

. . .
...

...
. . .

. . . 0
0 · · · 0 1

2 Q−1
w










ξ0
ξ1
...

ξt−1


 < 0 (4.29)
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where
P := [

E AE · · · At−1 E
]
.

We introduce

ξ̃i := 1√
2

Q
− 1

2
w ξ(i)

for i = 0, · · · , t − 1. Next, we rewrite (4.29) as




ξ̃0

ξ̃1
...

ξ̃t−1




T

[
P̃T R P̃ − I

]



ξ̃0

ξ̃1
...

ξ̃t−1


 < 0

where

P̃ := 2P Q
1
2
w

and I is an identity matrix. So, (4.29) is satisfied if P̃T R P̃ − I is negative definite i.e.

P̃T R P̃ < I

which is equivalent to

R
1
2 P̃ P̃T R

1
2 < I. (4.30)

Next, we expand (4.30) as

R
1
2 Q

1
2
w

[ t−1∑
i=0

Ai E(Ai E)T
]

Q
1
2
w R

1
2 < I. (4.31)

To show that (4.31) is satisfied consider the controlability grammian

Mξ :=
∞∑

i=0

Ai E(Ai E)T .

Because of assumption 4.2.1
Mξ = I

and since
t−1∑
i=0

Ai E(Ai E)T < Mξ

it can be concluded that (4.31) is satisfied for all t . This completes the necessity part
of the proof.

For the sufficiency part assume that �R = � and observe that (4.27) grows quadrati-
cally in Ai Bϕ(xi , i). Since B is injective, it is always possible to find a ϕ ∈ � such
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that condition (4.14) is violated if U is unbounded. Thus, (4.14) can be satisfied for
all ϕ ∈ � only if U is bounded. Next, assume

(
At E

)T
R
(

At E
)− 1

2
Q−1

w ≥ 0

for some t = 0, 1, 2 · · · . With this, it is not possible to find " such that (4.27) is
satisfied for all ξ t−1 ∈ R� × R

t−1\". Thus, (4.14) can be satisfied only if

(
At E

)T
R
(

At E
)− 1

2
Q−1

w < 0

Note that assuming B is an injective matrix is actually a very weak assumption in the
sense that it is naturally satisfied in any practical application.

The result presented in theorem 4.3.5 gives conditions under which is possible to
search for the solution of the optimization problem 4.2.4 in the general set of con-
tinuous feedbacks � , when U is bounded. This is a considerable simplification when
compared to the general case in which the solution has to be searched in a subset of the
set � . When one deals with the general case in which U is not necessarily bounded,
the essential problem is to characterize the set �R or a subset of �R which contains
a solution of the optimization problem 4.2.4. Problems of this kind, related to the
optimization problem 4.2.4, are topics for further research.

Even when the set U is bounded, solving the optimization problem 4.2.4 is difficult. A
way to tackle the optimization problem 4.2.4 is to design a model predictive controller.
The resulting controller will not be the optimal one for the optimization problem 4.2.4
but the approximation with the predictive controller can be arbitrary good, depending
on the size of the control horizon. As pointed out in [11–13] the standard, convex
optimization in open loop that is prevailing in the MPC literature can not be applied
when stochastic disturbances are considered, because it is not possible to control the
variance of the state over the control horizon without the control in closed loop. Algo-
rithms presented in the papers [11–13] are based on the computation of the empirical
mean. With suitable modifications and extensions the same approach can be used to
develop an algorithm that will solve the optimization problem 4.2.4.

4.4 Stochastic model predictive controller

The design of a predictive controller is based on an optimization problem that is solved
at each time instant t , (t ∈ Z+) over an interval It := {t + k|k ∈ T }, T := [0, N]
where N > 0. The interval It is a fixed length interval which recedes with the time
t . The model of the plant (4.1) as well as the cost function and optimization problem
to be defined later, are time-invariant. Therefore, variables involved in the design of
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a predictive controller can be defined as functions of k ∈ T rather than the functions
of the current time, without loss of generality. We will refer to the interval T as the
control horizon with the length N .

With xN : {0, · · · , N + 1} → R
n we denote the progression of the predicted state

over the control horizon. Over the control horizon, it is assumed that the model (4.1)
is subject to the disturbance ν : T → W. The input of the plant over the control
horizon is optimized in closed loop i.e. the input u N (k) is a function of the predicted
state xN (k). Formally, we define the set of feedback control laws � where π ∈ �

is a vector (πk)
N
k=0 such that for any k ∈ T , the map πk : Rn → U is continuous.

The progression of the predicted state (xN (k))N+1
k=0 is generated by (4.1), with an ini-

tial condition x N (0) := x(t), with the disturbance ν(k) := w(t + k) and the input
uN (k) = πk (xN (k)). Note that the predicted state x N is a function of the measured
state x(t), the feedback control laws in the vector π and the disturbance ν and is
therefore stochastic.

The cost that we consider is defined by:

J (x, π) := E

{∑
k∈T

{
g(zN (k))+ h(xN (k))

}+ ‖xN (N + 1)‖2
Q

}
(4.32)

subject to xN (0) = x . The expression ‖x‖2
Q := 〈x, Qx〉 is called an end point penalty

with Q ∈ Rn×n a positive definite, symmetric matrix.

The optimization problem to be solved is stated next:

Problem 4.4.1 Find a vector of optimal feedback mappings π ∗ ∈ � such that

J (x, π∗) ≤ J (x, π)

for all π ∈ � and for all x ∈ Rn . In addition, determine the optimal cost given by:

V (x) := inf
π

J (x, π). (4.33)

If the vector of optimal feedback mappings π ∗ exists, then V (x) = J (x, π ∗) and
only the first element of π ∗ is significant in the receding horizon implementation. It
determines the current input for the plant as a function of the current measurement. In
the next time instant, the control horizon is shifted forward and optimization problem
4.4.1 is solved based on a new state measurement. Therefore, the receding horizon
controller in the setting described above, is given by:

u(t) = π∗
0 (x(t)) ∀ t ∈ Z+ (4.34)

where u(t) is the input to the plant at time t .

The optimization problem 4.4.1 is a finite horizon optimization problem. A rigorous
analysis of the relationship between the optimization problem 4.4.1 and the optimiza-
tion problem 4.2.4, which is an infinite horizon optimization problem, is an interesting
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but difficult topic for further research. Intuitively, it can be expected that optimization
problems 4.2.4 and 4.4.1 yield the same result asymptotically, for large N . An asymp-
totic result is of a limited value in practical applications, however. An additional
difficulty in analysis is the end point penalty that is needed for stability of overall
system.

Stability of the model predictive control for constrained systems has been addressed
in many papers (see [97] for a survey). Available results require the stability constraint
on the state at the end of the control horizon or the terminal constraint set to be in-
corporated in the cost. A stability constraint requires x N (N + 1) = 0 which is an
equivalent of an infinite end point penalty in (4.32). An infinite end point penalty is
often not desirable in applications of the model predictive control. Results have been
reported about the minimum size of the end point penalty that is needed for stabil-
ity of the overall system in deterministic setting. (See [141, 158].) Since the state is
stochastic in the optimization problem 4.4.1, the expectation of the end point penalty
is:

E‖xN (N + 1)‖2
Q = ‖ExN (N + 1)‖2

Q + Trace(Qx Q)

where Qx is the covariance matrix of the state at N + 1. The above equation explains
the trade-off inherent to the predictive control of the stochastic systems. It is not just
the expectation of the state that has to be kept small (close to zero) but also its variance.
By setting the end point penalty to be ‖Ex N (N + 1)‖2

Q some of the difficulties in the
analysis will be removed but we will lose ability to control the variance of the state at
the end of control horizon. The expectation of the state could be made arbitrary small
by choosing a large Q with an expense of the large variance.

In the stochastic setting, there are no results that relate the size of the end point penalty
and stability of the closed loop system. An additional interesting aspect is a trade off
between the size of the end point penalty and the variance of the predicted state. It is a
topic for further research and for the time being we look at the choice of the end point
penalty as a “tuning parameter”.

Model predictive controller (4.34) is a solution to the optimization problem 4.4.1. To
solve the optimization problem 4.4.1 one has to overcome several difficulties. The
optimal vector of feedback laws π ∗ is an element of an infinite dimensional set, a fact
that renders the optimization problem 4.4.1 infinite dimensional optimization problem
except for cases in which the disturbance is taking values from a finite set.

Theorem 4.4.2 Consider the optimization problem 4.4.1. Under assumptions 4.2.1
and 4.2.5, the optimal cost (4.33) and the associate vector of feedback mappings π

can be obtained recursively as follows:

Vs(x) := inf
u∈Rm

{
g(Czx + Dzu)+ h(x)+ E ν Vs+1 (Ax + Bu + Eν)

}
(4.35)

with an initial condition:
VN+1(x) := ‖x‖2

Q



Page 91 of 155

4.4. Stochastic model predictive controller 87

that has to be solved backwards from s = N to s = 0. The expression E (·) denotes
conditional expectation with respect to (·).

Proof: Two properties are crucial for the proof of the theorem. The first one is
the causality of the system (4.1): a state at some k ∈ T does not depend on distur-
bances ν( j) and feedback laws π j , j > k, j ∈ T . The second one is the fact that
ν(0) · · · ν(N) are independent stochastic variables. Because of these two properties,
the optimal cost (4.33) can be rewritten as:

inf
π0···πN−1

{
g(zN (0))+ h(xN (0))+

+
N−1∑
k=0

E ν(0)Eν(1) · · · E ν(k−1)
{
g(zN (k))+ h(xN (k))

}+

+ inf
πN
Eν(0) · · · Eν(N−1)

{
g(zN (N)) + h(xN (N) + Eν(N)‖xN (N + 1)‖2

Q

}}
(4.36)

where:
zN (k) = Cz xN (k)+ Dzπk(xN (k)), k ∈ [0, N].

According to assumption 4.2.5, the state constraints violation cost h is a convex, finite
valued function. The last term from the above can be rewritten as follows (see [11],
lemma 1):

E ν(0)E ν(1) · · · E ν(N−1) inf
u∈Rm

{
g(zN (N)) + h(xN (N)) + Eν(N)‖xN (N + 1)‖2

Q

}
.

Define:

VN (x) := inf
u∈Rm

{
g(Cz x + Dzu)+ h(x)+ E ν ‖Ax + Bu + Eν‖2

Q

}
so that (4.36) can be rewritten as:

inf
π0···πN−2

{
g(zN (0))+ h(xN (0))+

+
N−2∑
k=0

E ν(0)Eν(1) · · · Eν(k−1)
{
g(zN (k))+ h(xN (k))

}+
+ inf

πN−1
E ν(0) · · · Eν(N−2)

{
g(zN (N − 1))+ h(xN (N) + Eν(N−1) VN (xN (N))

}}
.

Define:

VN−1(x) := inf
u∈Rm

{
g(Czx + Dzu)+ h(x)+ E ν VN (Ax + Bu + Eν)

}
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and rewrite (4.36) as:

inf
π0···πN−3

{
g(zN (0))+ h(xN (0))+

+
N−3∑
k=0

E ν(0)Eν(1) · · · Eν(k−1)
{
g(zN (k))+ h(xN (k))

}+
+ inf

πN−3
E ν(0) · · · E ν(N−3)

{
g(zN (N −1))+h(xN (N)+E ν(N−2)VN−1(xN (N −1))

}}
.

By proceeding in this way, the optimization problem 4.4.1 can be rewritten as the
recursion (4.35).

The recursion given by (4.35) can be seen as a nested sequence of optimization prob-
lems defined over the input u ∈ U. As already mentioned, the function g is a strictly
convex function in x and u and the function h is a convex function in x . To see that
optimization problems in (4.35) are convex optimization problems it is necessary to
show that the optimal “cost-to-go” Vs is a convex function in x for all s ∈ T .

Theorem 4.4.3 The optimal cost to go Vs is a convex function in x for all s ∈ T .

Proof: At each s ∈ T , the optimal cost to go Vs can be written as:

Vs(x) = inf
π s

Js(x, π
s) (4.37)

where π s ∈ �s is a sequence of maps π s
k : R → U such that u N (k) = π s

k (xN (k))
with k = s, . . . , N . The cost to go Js is defined with:

Js(x, π
s) := E

{ N∑
k=s

{
g
(
Cz(xN (k))+ Dzπk(xN (k))

)+h(xN (k))
}+‖xN (N +1)‖2

Q

}
.

(4.38)
where xN (s) = x . The optimal cost to go (4.37) is defined as a minimization over a
class �s . We first extend the class �s of functions over which optimization is defined.
Assume we optimize over �̃s where π̃ s ∈ �̃s is a sequence of maps π̃ s

k : Rn(k+1) →
U such that

uN (k) = π̃ s
k (xN (0), xN (1), . . . , xN (k)). (4.39)

Since the future at time k only depends on x N (k), it is obvious that this extension of
the class of controllers does not change the infimum. Next, note that the feedbacks in
the class �̃s can be equally represented by the class �̄s where π̄ s ∈ �̄s is a sequence
of maps π̄ s

k : Rn+k → U such that

uN (k) = π̄ s
k (xN (0), ν(0), . . . , ν(k − 1)) . (4.40)

This is based on the fact that
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• Given xN (0), ν(0), . . . , ν(k − 1) and π̄ s we can recursively construct x N (0),
xN (1), . . ., xN (k) and π̃ s such that

π̄ s
k (xN (0), ν(0), . . . , ν(k − 1)) = π̃ s

k (xN (0), xN (1), . . . , xN (k)) (4.41)

• Given xN (0), xN (1), . . . , xN (k) and π̃ s it is possible to recursively construct
xN (0), ν(0), . . ., ν(k − 1) and π̄ s such that (4.41) is satisfied. If E is not
injective then ν(0), . . . , ν(k − 1) are not uniquely determined but it is trivial to
see that this does not affect the corresponding infima.

We conclude that the infimum in (4.37) is the same if π s is taken from �s , �̃s or �̄s .
It therefore suffices to show that

inf
π̄ s∈�̄

Js(x, π̄
s)

is a convex function in x .

With the disturbance up to k − 1 denoted by ν k := (ν( j))k−1
j=0 we define:

j k
s (x, π̄k, ν

k) :=
{

g
(
Cz(xN (k))+ Dzπ̄k(x, νk)

)+ h(xN (k)) if k �= N + 1

‖xN (k)‖2
Q if k = N + 1

with xN (s) = x . The cost to go (4.38) can be written as:

Js(x, π̄
s) = E

N+1∑
k=s

j k
s (xN (k), π̄k, ν

k)

where xN (s) = x .

Next, consider x a , xb ∈ Rn , xa �= xb. The corresponding minimizing feedback in �̄s

are denoted by π̄ s
a and π̄ s

b , respectively. Suppose that a realization of the disturbance ν
is denoted by νi . A disturbance realization up to k−1 is denoted by ν k

i := (νi ( j))k−1
j=0.

Define:
ua

i := π̄ s
a

(
xa, νi

)
and:

ub
i := π̄ s

b

(
xb, νi

)
.

Inputs up to time k are denoted by ū ak
i := (ūa( j))k

j=0 and ūbk
i := (

ūb( j)
)k

j=0. The
function g is a strictly convex function in x and u, the function h is a convex function
in x and the cost j k

s is jointly convex in (x, u), therefore:

j k
s (λxa+(1−λ)xb, λūak

i +(1−λ)ūbk
i , νk

i ) ≤ λj k
s (x

a, ūak
i , νk

i )+(1−λ) j k
s (x

b, ūbk
i , νk

i )

where λ ∈ (0, 1). Define:

˙̄π s(x, ν) = λπ̄ s
a (x

a, ν)+ (1 − λ)π̄ s
b (x

b, ν)
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Clearly ˙̄π s ∈ �̄s and ˙̄π s is a sequence of feedback maps:

˙̄π s
k (x, ν

k) = λπ̄ s
a (x

a, νk)+ (1 − λ)π̄ s
b (x

b, νk).

Consider:

Js(x, ˙̄π s) = E

N+1∑
k=s

j k
s (xN (k), ˙̄π s

k , ν
k).

Because the cost j k
s is convex, the expectation is a linear operator and therefore pre-

serve convexity we can write:

Js(λxa + (1 − λ)xb, ˙̄π s) ≤ λJs(x
a, π̄ s

a )+ (1 − λ)Js(x
b, π̄ s

b ).

Finally:

Vs(λxa + (1 − λ)xb) ≤ Js(λxa + (1 − λ)xb, ˙̄π s)

≤ λJs(xa, π̄
s
a)+ (1 − λ)Js(xb, π̄

s
b) = λVs(x

a)+ (1 − λ)Vs(x
b)

for all x a , xb ∈ R
n and λ ∈ (0, 1).

4.5 The algorithm

The algorithm for solving the optimization problem 4.4.1 has its origin in the result
presented in theorem 4.4.2. An analytical computation of the expectation (4.35) is
generally a difficult task. An alternative is to compute the empirical mean.

Definition 4.5.1 Assume a set � and a probability measure P on � are given. Let
f : � → � be a function measurable with respect to P where � is an interval on R n

(possibly equal to Rn ). Suppose that we draw m independent, identically distributed
(i.i.d) samples ϑ = {θ1, · · · , θm} from � in accordance with P. The empirical mean
of the function f is given by:

Ê f := 1

m

m∑
j=1

f (θ j ). (4.42)

For more detailed treatment of the empirical mean and the convergence properties for
a large number of samples see [11–13, 69, 151]. To compute the cost by the empir-
ical mean, a number of realizations of the stochastic disturbance w is needed. The
cost for a specific realization of the stochastic disturbance w is easily computed but
realizations have to be chosen so that the empirical mean is computed efficiently. It
is well known that an estimate based on linear gridding requires a number of samples
that is exponential in the dimension of the stochastic variable to preserve accuracy in
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the estimation. A standard method that is used instead of the linear gridding is the
Monte Carlo simulation. Realizations of the stochastic disturbance are chosen ran-
domly, according to the distribution of w. It is well known that bounds on the number
of samples needed to preserve accuracy of the estimation can be obtained indepen-
dent of the underlying distribution of the stochastic process. Before we present the
algorithm, we explain briefly stochastic sampling of the disturbance.

Suppose that we take κ samples of the disturbance ν(0) at s = 0. Given a fixed initial
condition x0 and an input u(0) = π0(xa(t)) there are κ possible states xN (1). For each
one of these possible futures we generate κ samples of the disturbance ν(1) which
establishes κ2 possible future states x N (2). In this way, we obtain κ N samples of the
disturbance ν. The number of samples of ν grows exponentially with the horizon.
The sampling as described is required for a good estimate of the optimal cost to go V s

(4.35). One might conjecture that we do not need this because a very accurate estimate
of Vs is not required. Actually, only a good estimate of V0 is required, because it
determines π0. However, we have no proof that a restricted set of samples still yields
a correct result with a high probability.

An other approach would be to form a grid on the state space and to estimate the
optimal cost “to go” on the points of the grid. Note that any kind of linear grid will
not reflect a spread of the state around its mean value, resulting in a great number
of points in which the state is not likely to be. The sampling procedure described
above gives a grid on the state space that is more dense in the region in which the state
is more likely to be. Moreover, the number of grid points grows exponentially (in
the dimension of the state space) while the number of points required for stochastic
sampling is independent of the dimension of the state space.

The cost computed via an empirical mean is given with:

Ĵ (x, π) := Ê

{∑
k∈T

{
g(zN (k))+ h(xN (k))

}+ ‖xN (N + 1)‖2
Q

}
. (4.43)

The optimization problem 4.4.1 is replaced by the optimization in which we seek for
a minimum of the empirical cost (4.43) instead of the cost (4.32). The algorithm is
based on the following theorem.

Theorem 4.5.2 Consider the optimization problem 4.4.1 in which the empirical cost
(4.43) is minimized instead of (4.32). Under assumptions 4.2.1 and 4.2.5, the empiri-
cal optimal cost:

V̂ (x) := inf
π

Ĵ (x, π) (4.44)

and the associate vector of feedback mappings π can be obtained recursively as fol-
lows:

V̂s(x) := inf
u∈Rm

{
g(Czx + Dzu)+ h(x)+ Ê ν V̂s+1 (Ax + Bu + Eν)

}
(4.45)
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with an initial condition:
V̂N+1(x) := ‖x‖2

Q

that has to be solved backwards from s = N to s = 0. The expression Ê (·) denotes em-
pirical conditional expectation with respect to (·). The empirical optimal cost (4.44)
is obtained from (4.45) by V̂ (x) = V̂0(x).

Proof: The proof is obtained from the proof of theorem 4.4.2 with the difference
that the expectation is replaced by the empirical mean.

The optimization problems in (4.45) are convex optimization problems, as outlined in
the following lemma.

Lemma 4.5.3 The empirical optimal cost to go V̂s is a convex function in x for all
s ∈ T .

Proof: With obvious modifications, the proof of the lemma follows the proof of
theorem 4.4.3.

With the disturbance sampled as described at each s, s ∈ {0, · · · , N − 1} there are
κs possible states denoted by x i

N (s), i ∈ {1, · · · , κs}. For initialization of the algo-
rithm we use the result presented in corollary 4.3.4. Denote a feedback controller that
achieves condition (4.14) for the problem at hand with ϕ 0. Note that the case in which
all inputs are constrained or the case of no input constraints can be easily treated as
special cases of the result presented in corollary 4.3.4. The algorithm is presented next.

Algorithm 4.1

Step 1: Initialization
Take the measurement x0 and set x1

N (0) = x0. Set ûi (s) = ϕ0(xi
N (s)) for s =

0, 1, . . . , N , i = 1, . . . , N . Draw κ N samples for w. Set V = ∞. Set accuracy
parameter ε. Set s = N .

Step 2: Compute cost ”to go”
Determine a new û i (s) by solving (4.45) for each x i

N (s), i = 1, . . . κ s . Compute

V̂s(xi
N (s)) for each i . If s = 0 go to step 4, otherwise set s = s − 1 and go to step

2.

Step 4: Exit condition
If |V̂0(x1

N (0))− V | < ε stop. Otherwise: set V = V̂0(x1
N (0)), set s = N and go

to step 2.
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The convergence of the solution obtained by algorithm 4.1 is not a trivial issue. The
solution is a function of the disturbance sample that is used in the computation and
therefore the convergence of the cost function V̂0(x) obtained from algorithm 4.1 to
the optimal cost V (x), defined in (4.33) need to be accessed in a probabilistic sense.
As it will be shown in this section, the convergence in probability of V̂0(x) to the
optimal cost V (x) can be proven under some weak assumptions. The first one of them
is that matrix Dz is injective which is necessary for the cost function to be strictly
convex. Next assumption is that the cost function has at most exponential growth.
As shown in section 4.2, this assumption does not pose limitations on the growth of
the cost function. The limitation is posed by the stochastic nature of the disturbance
and it is expressed in solvability conditions presented in section 4.3. It turns out that
condition (4.26) is necessary to be satisfied for the solution obtained by algorithm 4.1
to converge in probability to the solution of the optimization problem 4.4.1.

To prove the convergence, we need an auxiliary result that is presented next.

Theorem 4.5.4 Consider strictly convex functions f : Rn ×U×R
l → R where U is

a bounded subset of Rm and V : Rn → R related by

f (x, u, ξ) = g(Czx + Dzu)+ h(x)+ V (Ax + Bu + Eξ) (4.46)

such that
V, g, h ∈ �(R).

Next, consider a random variable w ∈ N (0, Qw). Assume that R satisfies condition
(4.26) with respect to the covariance matrix Qw . Then, for any ε > 0 and δ ∈ (0, 1)
there exists κ∗ such that for any κ > κ ∗ it is true with probability (1 − δ) that∣∣∣ inf

u∈U
Êw f (x, u, w)− inf

u∈U
Ew f (x, u, w)

∣∣∣ ≤ εe‖x‖2
R (4.47)

where

Êw f (x, u, w) := 1

κ

κ∑
i=1

f (x, u, wi ) (4.48)

is the empirical mean based on κ independent samples w1, · · · , wκ identically dis-
tributed according to N (0, Qw).

Proof: The proof of the theorem is motivated by the proof of the theorem 2, page 8
in [112] where the convergence of empirical means is shown for measurable functions
of stochastic variable in a class F when there exists a finite class containing an upper
and a lower approximations to each f in F . Because U is compact, the essence of this
proof can be used to prove theorem 4.5.4. This claim will be illustrated for a simple
case first.

Let p : Rl × [−1, 1] → R be a convex function given by:

p(w, u) = g(Dzu)+ V (Bu + Ew).
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Note that since V, g ∈ �(R) and R satisfies condition (4.26) with respect to the
covariance matrix Qw , the expectation of p is well defined (theorem 4.3.5). Define
functions pi , i = 1, · · · , n by

pi(w) := p
(
w,−1 + 2i

n

)
i = 0, · · · , n.

Consider ∣∣∣ inf
u
Êw p(w, u)− inf

u
Ew p(w, u)

∣∣∣ u ∈ [−1, 1] (4.49)

which can be rewritten as∣∣∣ inf
u
Êw p(w, u)− inf

i
Êw pi (w)+ inf

i
Êw pi(w)

− inf
i
Ew pi (w)+ inf

i
Ew pi(w)− inf

u
Ew p(w, u)

∣∣∣ ≤∣∣∣ inf
u
Êw p(w, u)− inf

i
Êw pi (w)

∣∣∣+ ∣∣∣ inf
i
Êw pi(w)− inf

i
Ew pi (w)

∣∣∣+∣∣∣ inf
i
Ew pi (w)− inf

u
Ew p(w, u)

∣∣∣ (4.50)

The second term on the right hand side in inequality (4.50) can be made arbitrary
small by choosing κ large enough since we infimize over a finite set of functions. Set

ui = −1 + 2i

n
.

Next, note that p ∈ �(R) since V, g ∈ �(R). Then there exists q ∈ �(R) such that
there exists ui with |u − ui | < 1 and ũ such that

|p(w, u)− p(w, ui )|
|u − ui | = |p(w, ũ + 1)− p(w, ũ)|

1
≤ q(Bu + Ew). (4.51)

Equation (4.51) can be more elegantly expressed in terms of subdifferentials. There-
fore, there exists p, q ∈ �(R) such that for some suitable chosen u i

|p(w, u)− p(w, ui )| ≤ q(Bu + Ew) |u − ui |. (4.52)

Inequality (4.52) implies that the first term on the right hand side of (4.50) satisfies∣∣∣ inf
u
Êw p(w, u)− inf

i
Êw pi(w)

∣∣∣ ≤ Êwq(Bu + Ew)min
i

|u − ui |

and similarly to the term above∣∣∣ inf
u
Ew p(w, u)− inf

i
Ew pi(w)

∣∣∣ ≤ Ewq(Bu + Ew)min
i

|u − ui |.

Next, note that by choosing n sufficiently large min i |u − ui | can be made arbitrary
small. Since all terms on the right hand side in (4.50) can be made arbitrary small,
(4.49) can be made also arbitrary small.
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In our case u ∈ U instead of u ∈ [−1, 1] but since U is a compact set, the proof
relies on the same reasoning. Also, in general, p is exponential in x and therefore q
becomes an exponential function in x , which yields an exponential bound in (4.47).

The relation of the solution obtained by algorithm 4.1 and the original optimization
problem 4.4.1 is described in the theorem that is given next.

Theorem 4.5.5 Assume the following

1. matrix Dz is injective

2. g(·, u)+ h(·) ∈ �(R) for all u ∈ U

3. R satisfies condition (4.26) for t = 1

Then, for any initial condition x ∈ X, the cost function V̂0(x) obtained from algorithm
4.1 converge in probability to the optimal cost V (x), defined in (4.33), as ε → 0 and
κ → ∞.

Proof: The result will be established recursively. First, consider the optimal cost to
go at s = N

VN (x) = inf
u∈U

Ev

{
g(Cz x + Dzu)+ h(x)+ ‖Ax + Bu + Ev‖2

Q

}
(4.53)

and the empirical optimal cost to go s = N

V̂N (x) = inf
u∈U

Êv

{
g(Czx + Dzu)+ h(x)+ ‖Ax + Bu + Ev‖2

Q

}
. (4.54)

Since matrix Dz is injective

fN (x, u, v) := g(Cz x + Dzu)+ h(x)+ ‖Ax + Bu + Ev‖2
Q

is a strictly convex function in u. Note that f N (x, u, v) grows at most exponentially
in x (because of assumption (2)) and at most quadratically in v. By applying the result
of theorem 4.5.4 on f N (x, u, v) and with P = 0 we conclude that for any ε N > 0
and δN ∈ (0, 1) there exists κN such that for any κ > κN we have with probability
(1 − δN ) that ∣∣∣V̂N (x)− VN (x)

∣∣∣ ≤ εN e‖x‖2
R (4.55)

Next, consider the empirical optimal cost to go at s = N − 1

V̂N−1(x) = inf
u∈U

Êv

{
g(Cz x + Dzu)+ h(x)+ V̂N (Ax + Bu + Ev)

}
.
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Inequality (4.55) defines an upper bound for V̂N−1(x)

V̂N−1(x) ≤ inf
u∈U

Êv

{
g(Czx +Dzu)+h(x)+VN (Ax + Bu+ Ev)+εN e‖Ax+Bu+Ev‖2

R
}

(4.56)
and an lower bound

V̂N−1(x) ≥ inf
u∈U

Êv

{
g(Czx+Dzu)+h(x)+VN (Ax+Bu+Ev)−εN e‖Ax+Bu+Ev‖2

R
}
.

(4.57)
Define

V N−1(x) := inf
u∈U

Êv

{
g(Czx + Dzu)+ h(x)+ VN (Ax + Bu + Ev)

}
. (4.58)

Note that (4.56) and (4.57) imply that there exists α N > 0 such that∣∣∣V̂N−1(x)− V N−1(x)
∣∣∣ ≤ εN eαN ‖x‖2

R (4.59)

with probability (1 − δN ) if κ > κN .

Next, consider optimal cost to go at s = N − 1

VN−1(x) = inf
u∈U

Ev

{
g(Cz x + Dzu)+ h(x)+ VN (Ax + Bu + Ev)

}
.

and define

fN−1(x, u, v) := g(Cz x + Dzu)+ h(x)+ VN (Ax + Bu + Ev).

Function fN−1(x, u, v) has an exponential growth in x because of assumption (2) and
it grows in v exponentially.

Theorem 4.5.4 can be applied on f N−1(x, u, v) with P = E T RE and under assump-
tion (3). Thus, for any εN−1 > 0 and δN−1 ∈ (0, 1) there exist κN and κN−1 > κN

such that for any κ > κN−1 we have with probability (1 − δN−1) that∣∣∣V N−1(x)− VN−1(x)
∣∣∣ ≤ εN−1e‖x‖2

R (4.60)

Bounds (4.59) and (4.60) implies that for any ε N−1 > 0 and δN−1 ∈ (0, 1) there exist
κN and κN−1 > κN such that with probability (1 − δN−1)∣∣∣V̂N−1(x)− VN−1(x)

∣∣∣ ≤ εN−1eαN ‖x‖2
R (4.61)

By repeating arguments that are used to show (4.61), we conclude that for all s =
0, · · · , T , for any εs > 0 and δs ∈ (0, 1) there exist

κN , κN−1, · · · , κs+1 and κs > max{κN , κN−1, · · · , κs+1}
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such that for any κ > κs we have with probability (1 − δs) that∣∣∣V̂s(x)− Vs(x)
∣∣∣ ≤ εseαs‖x‖2

R . (4.62)

Finally, note that for s = 0, (4.62) proves the claim of the theorem.

With algorithm 4.1, the optimization problem 4.4.1 can be solved approximately but
with an arbitrary accuracy. The accuracy of the solution depends on a number of
samples of the disturbance w taken for computing the empirical mean. With algorithm
4.1 we are able to access the achievable performance when one aims to control the
plant (4.1), subject to the state and input constraints with the stochastic disturbance.

Note that the number of the evaluating points grow exponentially with the control
horizon. It is a consequence of a fixed number of disturbance samples used to eval-
uate the empirical cost. As the following numerical example shows, an exponential
growth in the number of samples is not needed and significant improvements in over-
all performance can be achieved with a smaller number of disturbance samples for
time instants s in the control horizon further away from s = 0. This effect is a con-
sequence of the receding horizon implementation of the controller. In the receding
horizon implementation only the control input computed at s = 0 is implemented.

4.6 Numerical example

In this section we present an example in which we consider a “double integrator”
system of the form:

x(k + 1) =
(

1 0
1 1

)
x(k)+

(
1
0

)
u(k)+

(
1
0

)
w(k)

z(k) =

 0 0

0.7 0
0 0.7


 x(k)+


0.33

0
0


 u(k)

(4.63)

The input is constrained as:

−0.5 ≤ u ≤ 0.5 u ∈ R.
The disturbance is a normally distributed random variable with zero mean and vari-
ance 0.2:

w ∈ N (0, 0.2) w ∈ R.
The state x is parameterized as:

x =
(

x1
x2

)
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and we impose a constraint on the state:

x2 ≥ 0.

It is assumed that the system has an initial state:

x(0) =
(

0
10

)
.

The task is to steer the system (4.63), subject to the stochastic disturbance, from the
initial state to the origin with the constrained input while respecting constraint on the
state. With that aim, we design a stochastic model predictive controller described in
section 4.4. We choose:

g(z) = ‖z‖2 z ∈ R
3 (4.64)

and

h(x) =
{

0 if x2 ≥ 0

e4.5x2
2 − 1 if x2 < 0

x =
(

x1
x2

)
∈ R

2 (4.65)

With functions g and h as above, the controller minimizes the expectation of the
quadratic cost when the state is away from the constraint x 2 > 0. When the state
is near or on the boundary of the constraint the exponential constraint violation cost
h dominates and the main objective of the controller is to avoid a constraint violation.
The constraint violation cost h makes overal cost to be in �(R) class of functions,
with

R =
(

0 0
0 4.5

)
.

It can be easily verified that this choice of R satisfies condition (3) of theorem 4.5.4.
The length of the control horizon is N = 5. The end point penalty in (4.32) is chosen
as:

Q =
(

1.6 0.9
0.9 1.33

)
.

We compare two predictive controllers.

Stochastic MPC. The disturbance is sampled. We take 5 samples of the disturbance at
the first instant in the control horizon and 3 at the second instant in the control horizon.
The samples are taken according to the distribution of the disturbance N (0, 0.2). The
number of samples of the disturbance ν is equal to 15. For each k ∈ Z+ solve the
optimization problem 4.4.1 by algorithm 4.1 with the state of the “double integrator”
(4.63) at k as the initial state. The input to the system (4.63) at k is the first control
from the vector of controls obtained by algorithm 4.1 at k.

Stochastic MPC controller takes into account the stochastic nature of the disturbance
and the optimization is performed in closed loop, based on a number of disturbance
samples.
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Stochastic  MPC ; state constraint x
2
 ≥ 0

Figure 4.1: “Double integrator” is controlled by stochastic MPC

In the second controller, the stochastic disturbance over the control horizon is set to
be equal to its mean value. In this way there is only one predicted state trajectory so
the result obtained by algorithm 4.1 is equivalent to the result of the optimization in
the open loop.

Standard MPC. Assume that the disturbance over the control horizon ν is equal to
the mean of w, i.e.

ν(k) = 0 for all k ∈ T .

For each k ∈ Z+ solve the optimization problem 4.4.1 by algorithm 4.1 with the
state of the system (4.63) as an initial state and with the function g and the constraint
violation cost h as (4.64) and (4.65). The number of samples κ is equal to 1 and the
sample values are set to zero. The first control from the resulting sequence of controls
is applied to the plant at k.

Standard MPC controller represents a standard approach to predictive control of stoc-
hastic systems in the model predictive control literature. (see [17] for a design of the
standard model predictive controller for the “double integrator” example). We include
this controller in the numerical example to compare its performance with stochastic
MPC controller where the optimization is performed in the closed loop and a vector
of feedbacks laws over the control horizon is obtained.

We perform two sets of simulations. In the first set the system (4.63) is controlled
by stochastic MPC controller and in the second one with standard MPC controller. In
each set of simulations there is a 100 simulations, each one of them performed with the
different realization of the disturbance w. The resulting trajectories of x 2 are plotted
on figure 4.1 for stochastic MPC and figure 4.2 for standard MPC. When the system
is “far” from the constraint boundary, controllers stochastic MPC and standard MPC
show similar performance. When the state of the system is near or on the boundary
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Figure 4.2: “Double integrator” is controlled by standard MPC

of the state constraint, standard MPC controller is not able to realistically predict a
possibility of the constraint violation, because of the assumption that the disturbance
in the “next time step” over the control horizon is equal to the mean value of the
disturbance, in this case zero. A probability that w will be larger than zero is high
so for a large number of disturbance trajectories the state constraint is violated. On
the contrary, stochastic MPC controller computes an optimal map from the state to
the input for a number of points in the state space. Points are determined with the
stochastic sampling of the disturbance and therefore there is a large probability that
the optimal map for the predicted states is computed in the region in which the state
of the system will be. Stochastic MPC controller takes into an account a possibility
of the constraint violation when the state of the system is near the boundary of the
constraint. This leads to the more realistic “prediction” and the control strategy that
respects the state constraints better.

To support that further, we compute a frequency distribution of trajectories at k = 11
(“overshoot” region) and the “steady state” region at the end of simulations. The x 2
axis is divided in 20 regions between −4 and 4 and the number of trajectories passing
trough each region is calculated. Dividing the number of trajectories with the total
number of simulations gives the frequency distribution of the trajectories. The fre-
quency distribution gives an estimation of the probability distribution of the states.
Because of the constraints, the controlled system is nonlinear and the probability dis-
tribution of the state is not easy to compute. The frequency distributions are plotted
on figure 4.3. Both figures show that the probability of constraint violation is signifi-
cantly smaller when the system (4.63) is controlled with stochastic MPC controller. It
can be observed that the variance of the trajectories around mean value is significantly
smaller when the “double integrator” is controlled with stochastic MPC controller.
With standard MPC controller, not only that the probability of the constraint violation



Page 105 of 155

4.6. Numerical example 101

−4 −3 −2 −1 0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2
 ≥ 0 

Stochastic MPC 

Standard MPC

x
2

frequency distribution of x
2
 at  k=11

−4 −3 −2 −1 0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
frequency distribution of x

2
 at  k=24

x
2

Stochastic MPC 

Standard MPC

x
2
 ≥ 0 

Figure 4.3: Frequency distribution of the state: solid line - stochastic MPC; dashed
line - standard MPC

is higher but also the probability that the system state will be away from the equilib-
rium point in the region x2 > 0.

Typically, to prevent an excessive constraint violation shown on figure 4.2 it is nec-
essary to increase a “set point” to which the plant is to be steered. Figure 4.4 shows
results of simulations in which the “double integrator” is controlled by standard MPC
controller with an increased set point. The set point is set to 1. The mean value of
the state at k = 24 is approximately the same for both controllers. Stochastic MPC
controller shows better performance with respect to the variance of the state. Note
that stochastic MPC controller chooses the set point “automatically” i.e. the “optimal
set point” is a result of the optimization performed with algorithm 4.1. Note that the
number of disturbance samples taken is smaller than the number that one would expect
according to estimates based on the probabilistic bounds available in the literature. In
despite of that, the performance of stochastic MPC shows significant improvement
over the performance of standard MPC. The reason is that in stochastic MPC the op-
timization is performed in closed loop and the sampling of the disturbance is based
on its probability distribution so we have a large probability of computing the con-
trol input for the states in which the system is likely to be in “future”. In contrary,
standard MPC computes only one control input for all states which is very crude way
of approximating the controller, given the fact that the system is subject to stochastic
disturbance. In short, a significant improvement of the performance can be achieved
even with a small number of disturbance samples when the optimization is in closed
loop.
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Figure 4.4: “Double integrator” is controlled by standard MPC; set point is increased
to x2 = 1.

4.7 Conclusion

In this chapter we extend the work presented in chapter 3 by considering state con-
straints in addition to constraints on the input. Constraints on the state are handled by
introducing an additional cost that penalizes constraint violation. When the state of
the system is in the constraint set, away from the boundary an optimal controller mini-
mizes the cost that measures the performance. When the state is close to the boundary,
the constraint violation cost dominates in the overall cost and the optimal controller
minimizes the possibility of constraint violation. In this approach, it is natural to ask
for a large penalty so that the state is kept within constraints as much as possible. The
penalty can not be arbitrary large, however. We present a condition on the growth of
the penalty function.

The optimization problem for the constrained linear system with the stochastic dis-
turbances is difficult problem to solve analytically. There is no method reported in
the literature that can be used to obtain an optimal controller for the problem. In this
chapter we present an approximate solution to this problem by a predictive controller.
A simulation study shows that even with the small number of disturbance samples
a significant improvement in the closed loop performance can be achieved when the
optimization over the control horizon in model predictive controller is performed in
closed loop.

Algorithms presented so far in the thesis deal with the state feedback case. In the next
chapter we remove the assumption that the state of the system is available for feedback
and consider the measurement feedback case.
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Optimal control of stochastic systems by
measurement feedback

In this chapter we extend the approach of the previous chapters to the measurement
feedback case. We remove the assumption that the state of the system is available
for feedback and show how algorithms from the previous chapters can be used in the
measurement feedback case.

5.1 Introduction

In chapters 3 and 4 we considered the optimal control of constrained systems that are
subject to stochastic disturbances. We derived solvability conditions for the problem
but analytical computation of the optimal controller turned out to be extremely difficult
task. The feasibile approach is to use model predictive control technique. So far,
we have obtained several computational algorithms for model predictive control of
constrained systems that are subject to stochastic disturbances. These results have
been based on the assumption that all states of the plant are available for feedback.

In this chapter, we consider the more general case in which we assume that output
of the plant is measured and available for feedback. In this case, static feedbacks are
no longer sufficient and we need to study dynamic feedbacks. In general, the state of
the plant is subject to constraints and we have only partial information about the state
via output measurements. The standard approach is to use an optimal state observer
to estimate the state of the plant. The state observer that we use for the purpose of
optimal state estimation is the well known Kalman filter. A measurement feedback
controller then have two separate tasks: the state estimation and the computation the
optimal input that is based on the static feedback from the estimated state. Within the
classical Linear Quadratic Gaussian framework, it is possible to obtain the optimal
controller by this approach, according to the well known "separation principle".

In section 5.2 we propose a problem setup for optimal control of systems with the
hard constraints on input and possible constraints on the state. When constraints on
the state are present, the constraint violation cost is added to the cost function (see
section 4.2, chapter 4) which makes the overall cost function non quadratic in gen-
eral. The problem setup does not fit in the classical LQG framework because of the
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input constraints and the possibly non quadratic cost function. The "separation prin-
ciple" does not necessarily give an optimal controller in this case. In section 5.3 we
study this issue and investigate in which cases the solution based on the "separation
principle" gives an optimal controller and in which cases we have to find an alternative
control structure.

In section 5.4, we design a model predictive controller that uses the optimal state es-
timate of the plant as an initial state for prediction. The feedback structure that is
inherent to the problem (i.e. the estimated state of the plant is used for feedback) is
taken into account in the prediction. The difficulty is that the output measurement is
not available over the control horizon and the correction of the prediction is not pos-
sible as in the standard Kalman filtering algorithm. To overcome this difficulty, we
consider the innovation of the prediction as a stochastic process. We present an algo-
rithm for model predictive control of stochastic systems via measurement feedback.

Finally, in section 5.5 we present two examples in which we implement a model pre-
dictive controller developed the section 5.4 on the system with constrained input and
the double integrator system.

5.2 Optimal control of stochastic systems by measure-
ment feedback

We consider the plant given by the discrete time state space equations

x(t + 1) = Ax(t) + Bu(t) + Ew(t)
y(t) = Cyx(t) + η(t)
z(t) = Cz x(t) + Dzu(t)

(5.1)

where u is the control input with u(t) ∈ U ⊆ R
m and x is the state with x(t) ∈ R

n .
The set U is a not necessarily bounded, closed, convex set which contains an open
neighborhood of the origin. We assume that constraints on the state x are imposed in
that x(t) is supposed to belong to a convex, closed set X ⊆ R

n that contains the origin
in its interior.

The second equation describes the measured output y with y(t) ∈ R
d . The out-

put to be controlled is z with z(t) ∈ R
p . The disturbance w and the measurement

noise η are two mutually independent stochastic processes with w(t) ∈ N (0, Q w)

and η(t) ∈ N (0, Qη) where N (0, Q) denotes the family of normally distributed ran-
dom variables with zero mean and covariance matrice Q. Moreover, for k �= j , w(k)
and w( j) are independent as well as η(k) and η( j). Note that this implies that also
the state x , the measurement y and the controlled output z are stochastic processes.

Thus, we consider a linear, time invariant plant, subject to stochastic disturbances
with a constrained input and a constrained state variable. The measurement output
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y is available for feedback. When the plant is subject to stochastic disturbances, the
constrained input limits the ability to control the plant, as already discussed in chapters
3 (page 47) and 4 (page 73). Therefore, the following assumption is necessary.

Assumption 5.2.1 The system (5.1) is globally asymptotically stabilizable.

As shown in chapter 3, if the system (5.1) is not globally asymptotically stabilizable
then no controller will exist that stabilizes this system. In addition to assumption
5.2.1 we assume the following, rather natural assumption when one deals with the
stabilization of the system (5.1) via measurement feedback.

Assumption 5.2.2 The matrix pair
(
Cy, A

)
is detectable.

We consider a problem of choosing u such that the following cost is minimized.

J (x, u) := lim
T→∞ E

1

T

T∑
t=0

j (x(t), u(t)) (5.2)

subject to the state equations (5.1) with x(0) = x where j : Rn × R
m → R+ is a

strictly convex function with j (0, 0) = 0. The choice of the function j depends on
the problem at hand. The case where only the input u is constrained (i.e. X = R

n ) has
been treated in chapter 3. In this case, the function j has been chosen as a quadratic
function. The general case with constraints on the state and the input has been treated
in chapter 4, where we redefined the cost j so as to include an exponential penalty on
state violations. Therefore, the structure of the cost (5.2) is general enough to capture
different problems.

The control input u has to be chosen such that u(t) is a function of all past measure-
ments. Ultimately, we will wish to implement the controller by means of a digital
computational device, which implies that at least 1 time unit will be required to calcu-
late the next control action. Because of this, we assume that at time t measurements
y(τ ), 0 < τ < t are used for computation of the input u(t). Thus, the system (5.1) is
controlled by means of a strictly causal dynamic feedback controller which is assumed
to be representable by the state equations

r(t + 1) = fcon(r(t), y(t))
u(t) = gcon(r(t))

(5.3)

with the initial condition r(0) = 0 and where functions f con : Rg × R
d → R

g and
gcon : Rg → R

m are continuous functions with

fcon(0, 0) = 0 and gcon(0) = 0

and where dim(r) is the (undecided) state dimension of the controller. We denote the
set of all feedback controllers of the form (5.3) by $ con.
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Figure 5.1: The system (5.1) is controlled by strictly causal feedback controller (5.3)

The control system that consists of the system (5.1) and controller (5.3) is depicted in
figure 5.1. Our aim is to find a controller from $ con such that the cost function (5.2)
is minimized. Obviously, the cost (5.2) with the input u subject to (5.3) is a function
of the controller from $con. We will denote this (with some abuse of the notation in
(5.2)) as

J (x, σ ), σ ∈ $con.

That is, J is viewed as a mapping J : Rn ×$con → R. Observe that if x is stochastic,
J (x, σ ) will be stochastic for any σ ∈ $con.

Formally we define the following optimization problem.

Problem 5.2.3 (GBG 1 problem) Consider the cost (5.2) where x is the state of the
system (5.1) with an initial condition x0 ∈ N (x̄, Qx ), x̄ ∈ R

n , Qx ∈ R
n×n , Qx ≥ 0.

Find an optimal controller σ̃ ∈ $con such that

E x0 J (x0, σ̃ ) ≤ E x0 J (x0, σ ) (5.4)

for all σ ∈ $con.

Finding an optimal, dynamic feedback controller σ̃ ∈ $ con is a difficult task. A
possible approach is to first estimate the state x by the Kalman filter (see Appendix
for more details) given by

x∗(t + 1) = Ax∗(t)+ Bu(t)+ G(t)
(
y(t)− Cy x∗(t)

)
(5.5)

with x∗(0) = x̄ . The Kalman gain, denoted by G(t), is given by

G(t) = AQ(t)CT
y

(
Qη + Cy Q(t)CT

y

)−1

1The Glass Bead Game abbreviated (see [68] for details)
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Figure 5.2: The system (5.1) is controlled by the "composite"controller: Kalman filter
+ static feedback

where Q(t) is the estimation error covariance matrix that satisfies the following recur-
sive relationship

Q(t + 1) = AQ(t)AT − AQ(t)CT
y

(
Qη + Cy Q(t)CT

y

)−1
Cy Q(t)AT + E Qw ET

with Q(0) = Qx .

Note that the plant data, together with the noise assumptions allow to compute Q(t),
G(t) and hence (5.5). Then, u is chosen so that u(t) is a function of x ∗(t) i.e. the
control input is computed by means of a static feedback controller

u(t) = ϕ
(
x∗(t)

)
(5.6)

where ϕ : Rn → U is a continuous function with ϕ(0) = 0. We denote the set of all
such static feedback controllers by � .

By using the control input to the plant given by (5.6) with ϕ ∈ � where x ∗ is the state
of the Kalman filter (5.5), we actually assemble a strictly causal dynamic controller
of the form (5.3). This control structure is shown in figure 5.2. The set of all strictly
causal dynamic controllers obtained by the "composition"of the feedback (5.6) with
ϕ ∈ � and the (fixed) Kalman filter (5.5) is denoted by $kf+sf. Hence, in general

$kf+sf ⊆ $con.

Next, we consider the following optimization problem.
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Problem 5.2.4 (CDC 2 problem) Consider the cost (5.2) where x is the state of the
system (5.1) with an initial condition x0 ∈ N (x̄, Qx ), x̄ ∈ R

n , Qx ∈ R
n×n , Qx ≥ 0.

Find an optimal controller σ̃ ∈ $kf+sf such that

E x0 J (x0, σ̃ ) ≤ E x0 J (x0, σ ) (5.7)

for all σ ∈ $kf+sf.

Suppose now that an optimal controller to the CDC problem, σ̃ ∈ $ kf+sf, exists. Then,
by construction, there exists ϕ̃ ∈ � such that the control input produced by σ̃ can be
represented as

u(t) = ϕ̃
(
x∗(t)

)
(5.8)

where x∗(t) is given by Kalman filter (5.5). The design consists of two separate tasks:
a design of the Kalman filter and the task of finding an optimal, static feedback con-
troller ϕ̃ ∈ � .

The design of the Kalman filter is straightforward in the problem setting that we con-
sider. After fixing Kalman filter (5.5), the CDC problem amounts to finding ϕ̃ ∈ �

i.e. an optimal static state feedback in the composite controller shown in figure 5.2.

For the classical LQG problem, where the system is assumed to be unconstrained and
the cost is assumed to be quadratic, it is well known that the "composite" controller
that consists of the LQ optimal static state feedback and the Kalman filter is optimal
in the set $con. Thus, in this case, the optimal static state feedback can be found by
considering a separate, static state feedback optimization problem. In general, the
same can not be done for the CDC problem because of the saturated input and the
possibly non quadratic cost function. To investigate in which cases an optimal ϕ̃ ∈ �

in the composite controller from figure 5.2 can be found as a solution of the static state
feedback optimization problem we consider the auxiliary system

xa(t + 1) = Axa(t)+ Bu(t)+ G(t)ζ(t) (5.9)

where ζ is a normally distributed stochastic process with zero mean and a time depen-
dent covariance matrix Q(t). Note that with an initial condition x a(0) set to be equal
to the initial condition of the Kalman filter (5.5) the stochastic properties of the state
xa are equal to the stochastic properties of the estimated state x ∗.

Consider the following cost function

J a(x̄ a, u) := lim
T→∞ E

1

T

T∑
t=0

j (xa(t), u(t)) (5.10)

subject to (5.9) with x a(0) = x̄ . Here, u is chosen so that u(t) is a function of x a(t),
i.e.

u(t) = ϕ
(
xa(t)

)
(5.11)

2The composite dynamic controller abbreviated
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u

ζ a

Controller

ϕ Ψ

Auxiliary

system

x

Figure 5.3: The auxiliary system (5.9) with the state feedback

where ϕ is a controller in � . Thus we consider static state feedback for the system
(5.9). This control structure is shown in the figure 5.3.

Then, we consider the following optimization problem.

Problem 5.2.5 (FSF 3 problem) Consider the cost (5.10) where x a is the state of the
auxiliary system (5.9) with an initial condition x a(0) = x̄ and the input u given by
(5.11) for some ϕ ∈ � . Find an optimal controller ϕ ∗ ∈ � such that

J a(x̄ a, ϕ∗) ≤ J a(x̄ a, ϕ) (5.12)

for all ϕ ∈ � .

The reason that the FSF problem has been introduced is that under certain conditions
a feedback ϕ∗ optimal to the FSF problem, in composition with the Kalman filter as
shown in figure 5.2, is optimal to the CDC problem. If this holds, a solution of the
CDC problem can be found by solving two separate optimization problems: the opti-
mization problem of finding an optimal state estimator (the solution to this problem is
given by the Kalman filter (5.5)) and the FSF optimization problem. This is celebrated
"separation principle" that is nowadays a classical topic in stochastic and optimization
control theory. Moreover, a controller σ̃ ∈ $kf+sf obtained by this separate design,
optimal to the CDC problem, is an optimal controller for the GBG problem. In the
next section we give a condition on the cost function that has to be satisfied so that
this desirable equivalence between optimization problems GBG, CDC and FSF can be
established.

The main advantage of the controller design represented by the FSF optimization prob-
lem is that it is equivalent to the optimization problem 4.2.4 except for the time vary-
ing covariance of the disturbance input. Therefore, the discussion about solvability

3The fictitious state feedback abbreviated
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conditions that is presented in section 4.3 concerns the FSF optimization problem as
well.

5.2.1 Kalman filter

Consider the system (5.1). It is well known that the optimal estimator of the state
x at time t is the conditional expectation of the state with respect to the available
information about the plant at time t . Because the controller (5.3) is strictly proper,
the best we can do is to use the one-step-ahead optimal predictor of the state defined
by

x∗(t) := E{x(t)|y(0), · · · , y(t − 1), u(0), · · · u(t − 1)}
where E{x(t)|(.)} denotes the conditional expectation of x(t) with respect to (.). It
can be shown (see [9, 81]) that x ∗ satisfies the following recursive relationship

x∗(t + 1) = Ax∗(t) + Bu(t) + G(t)
(
y(t)− Cy x∗(t)

)
(5.13)

where

G(t) = AQ(t)CT
y

(
Qη + Cy Q(t)CT

y

)−1

and

Q(t + 1) = AQ(t)AT − AQ(t)CT
y

(
Qη + Cy Q(t)CT

y

)−1
Cy Q(t)AT + E Qw ET

(5.14)
with

Q(0) = Ex(0)x(0)T .

We will refer to the predictor (5.13) as the Kalman filter. The matrix Q(t) is the
estimation error covariance matrix i.e.

Q(t) = E
{ (

x(t)− x∗(t)
) (

x(t)− x∗(t)
)T }

. (5.15)

The innovation process in the predictor (5.13) is defined as

τ (t) := y(t)− Cy x∗(t). (5.16)

The random vector τ (t)is a normally distributed random vector with zero mean and
the covariance given by

E
(
τ (t)τ (t)T ) = Cy Q(t)CT

y + Qη. (5.17)

Kalman filtering is nowadays a classical topic in stochastic control and estimation
theory, for further details and modifications see for instance [3, 9, 63, 73]. Note that
the Kalman gain G(t) and the covariance matrix Q(t) in the Kalman filter (5.13) are
time dependent matrices. Therefore, it is necessary to perform computations in each
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time step. It can be shown that under assumption 5.2.2, the error covariance matrix
converges to a fixed matrix Q as t → ∞. The matrix Q satisfies the following
algebraic Riccati matrix equation

Q = AQ AT − AQCT
y

(
Qη + Cy QCT

y

)−1
Cy Q AT + E QwET . (5.18)

Moreover, if the matrix pair (A, E) is stabilizable, the matrix Q does not depend on
the initial value Q(0). The Kalman gain converge to a fixed value G given by

G = AQCT
y

(
Qη + Cy QCT

y

)−1
. (5.19)

The Kalman filter (5.13) with the limit value of the Kalman gain G is called asymptotic
or steady-state Kalman filter. Because the asymptotic Kalman filter is significantly less
computationally demanding, it is used frequently in engineering applications. Note
that for small t the asymptotic Kalman filter is not optimal. However the convergence
to the limit value Q of the error covariance matrix is usually very fast.

5.3 Equivalence condition

The separation principle as described above relates CDC and FSF optimization prob-
lems. In this section we will show that this relationship depends on the class of func-
tions from which we choose function j in costs (5.2) and (5.10).

A choice of the function j depends on the problem at hand. In chapter 3 we have
considered systems with the constrained input and without constraints on the state.
The cost function was a quadratic function. In the next theorem we show that for the
case in which j is a quadratic function, the input

u(t) = ϕ∗ (x∗(t)
)

with a controllerϕ∗ that solves the FSF problem also minimizes the cost (5.2) provided
that x∗(0) = xa(0) i.e. under this condition the separation principle can be used to
solve the CDC optimization problem.

Theorem 5.3.1 Let ϕ∗ ∈ � be an optimal controller for the FSF optimization prob-
lem. Then

u(t) = ϕ∗ (x∗(t)
)

(5.20)

with x∗ obtained from (5.5) is an optimal controller for the CDC optimization problem
if the function j is a quadratic function.

Moreover, if the function j is a quadratic function controller (5.20) is an optimal
controller for the GBG optimization problem.
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Proof: Suppose that

j (x, u) = ‖Cz x + Dzu‖2 x ∈ Rn u ∈ U.

Consider the following computation of the conditional expectation

E
{

j (x(t), u(t))
∣∣y(0), · · · , y(t − 1), u(0), · · · , u(t − 1)

} =
= E j (xa (t), u(t)) + E

{
Cz(x(t)− xa(t))(x(t)− xa(t))T CT

z

}
.

Note that

E
{

Cz(x(t)− xa(t))(x(t)− xa(t))T CT
z

} = trace Cz Q(t)CT
z

where Q(t) is the estimation error covariance matrix (5.15).

Next, we rewrite the cost (5.2) in terms of the auxiliary state x a(t) instead of x(t) as

J (x, u) = lim
T→∞ E

1

T

T∑
t=0

j (xa(t), u(t)) + lim
T→∞

1

T

T∑
t=0

trace Cz Q(t)CT
z (5.21)

where x a(0) = x̄ . Equation (5.21) can be rewritten as

J (x, u) = J a(x, u)+ c (5.22)

where c is the constant term given by

c = 1

T

T∑
t=0

trace Cz Q(t)CT
z

Finally, note that according to (5.22), the input u that minimizes J a also minimizes J .

In chapter 4 we considered a more general class of systems with constraints on the
state in addition to the constrained input. In that chapter we showed that the cost
function needs to be extended with the constraint violation cost.

Definition 5.3.2 The constraint violation cost is a finite valued convex function h :
R

n → R+ with h(x) = 0 for all x ∈ X.

For the general case with constraints on the state and the constrained input, the func-
tion j in costs (5.2) and (5.10) is defined with

j
(
x, u

) := g
(
x, u

)+ h(x) x ∈ R
n u ∈ U (5.23)
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where g and h are chosen so that j is in the class of functions that have a so called
“Polynomial - Exponential Growth” denoted by �(R) (see definition 4.3.1). This
choice implies that the cost grows exponentially for large ‖x‖ i.e

j
(
x, u

) ∼ e‖x‖2
R as ‖x‖ → ∞.

Note that

E e‖x‖2
R = E e(x

T Rx+xaT
Rxa−xaT

Rxa) = E e(x−xa )T R(x−xa)
E e‖xa ‖2

R

where x is the state of the system (5.1) and x a is the state of the auxiliary system (5.9).
Because of this, rewriting the cost (5.2) in terms of the auxiliary state x a instead of
x will not give a linear relationship between costs (5.2) and (5.10) as in (5.22) i.e.
the input u, obtained by controller that solves the optimization problem 5.2.4 with the
function j given by (5.23) does not necessarily minimize J .

An alternative is to use the available information about the covariance of the state
estimation error, obtained by Kalman filter. The considered cost function is of the
form

J a
e (x, u) := lim

T→∞ E
1

T

T∑
t=0

je(x
a(t), Q(t), u(t)). (5.24)

The function je has to be chosen so that an input that minimizes cost (5.24) also
minimizes cost (5.2).

5.4 Model predictive controller by measurement feed-
back

Within the model predictive framework, an optimization problem is solved at each
time instant t , (t ∈ Z+) over an interval It := {t + k|k ∈ T } where T denotes the
control horizon T := {0, · · · , N} and N > 0. The model of the plant that is used
for the prediction and the optimization problem to be defined later, are time-invariant.
Therefore, variables involved in the design of a predictive controller can be defined
as functions of k ∈ T rather than the functions of the current time, without loss of
generality.

We assume that the optimization over the control horizon is performed in closed loop.
Formally, we define the set of feedback control laws � where π ∈ � is a vector
(πk)

N
k=0 such that for any k ∈ T , the map πk : Rn → U is continuous.

The dynamics of the plant (5.1) over the control horizon is then given by

xN (k + 1) = AxN (k) + B πk(x̂N (k)) + Eν(k)
yN (k) = Cy xN (k) + υ(k)

k = 0, 1, 2 · · · N (5.25)
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The disturbance ν and the measurement noise υ are mutually independent Gaussian
white noise processes with ν(k) ∈ N (0, Qw) and υ(k) ∈ N (0, Qη). The initial
condition for the recursion (5.25) is given by

xN (0) ∈ N (x∗
t , Qt )

where x∗
t and Pt are the state estimate and the error covariance matrix obtained by the

Kalman filter (5.13) at time t i.e. x ∗
t = x∗(t) and Qt = Q(t).

In the problem 5.2.4 we assume that the input is a function of the predicted state
according to (5.6). To make the prediction of the behaviour of the controlled plant
as realistic as possible, we introduce the predicted state over the control horizon(
x̂N (k)

)N+1
k=0 that is generated by the following one-step-ahead recursive predictor

x̂N (k + 1) = Ax̂N (k) + B πk(x̂N (k))+ G(k)
{

yN (k)− Cy x̂N (k)
}

k = 0, 1, 2 · · · N (5.26)

where

G(k) := AP(k)CT
y

(
Qη + Cy P(k)CT

y

)−1

and with x̂N (0) = x∗
t . The matrix P(k) is the covariance matrix of the estimation

error. It can be showed that the covariance matrix of the estimation error satisfies the
following Riccati equation

P(k + 1) = AP(k)AT − AP(k)CT
y (Qw + Cy P(k)CT

y )
−1Cy P(k)AT + E Qw ET

(5.27)
with P(0) = Qt . The difference between the Kalman filter (5.5) and the predictor
(5.26) is that in the Kalman filter innovation is performed based on the measurement
y(t). The measurement is not available over the control horizon because we predict
the "future"of the plant. Therefore we consider the measurement y N as a stochastic
process and define the innovation process in the predictor (5.26) as

ω(k) := yN (k)− Cy x̂N (k). (5.28)

The random vector ω(k) is a normally distributed random vector with zero mean and
the covariance given by

E

(
ω(k)ω(k)T

)
= Cy P(k)CT

y + Qη. (5.29)

The cost acquired over the control horizon is defined by:

J (x, π) := E

{∑
k∈T

{
g
(
Cz x̂N (k)+ Dz πk(x̂N (k))

)+ h(x̂N (k))
}+ ‖x̂N (N + 1)‖2

Q

}
(5.30)

subject to x̂N (0) = x . The expression ‖x‖2
Q := 〈x, Qx〉 is called an end point penalty

with Q ∈ Rn×n a positive definite, symmetric matrix.

The optimization problem to be solved is stated next:
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Problem 5.4.1 Find a vector of optimal feedback mappings π ∗ ∈ � such that

J (x, π∗) ≤ J (x, π)

for all π ∈ � and for all x ∈ Rn . In addition, determine the optimal cost given by:

V (x) := inf
π

J (x, π). (5.31)

If the vector of optimal feedback mappings π ∗ exists, then V (x) = J (x, π ∗).
Suppose that the solution of the optimization problem 5.4.1, π ∗, exists. According
to the receding horizon implementation, only the first element of π ∗ is significant in
the receding horizon implementation. The model predictive controller in our setting
is given by

u(t) = π∗
0 (x

∗(t)) t ∈ Z+. (5.32)

Note that the structure of the predictor given by equation (5.26) is the same as the
structure of systems that are used for prediction in the chapters 3 and 4. The difference
is that in (5.26) stochastic is determined by innovation process (5.28) instead of the
stochastic properties of the disturbance. Because the structure is the same, the results
from chapter 4 can be used to derive an algorithm for model predictive controller that
solves optimization problem 5.4.1.

Theorem 5.4.2 Consider the optimization problem 5.4.1. Under assumptions 5.2.1
and the constraint violation cost as given by definition 5.3.2, the optimal cost (5.31)
and the associate vector of feedback mappings π can be obtained recursively as fol-
lows:

Vs(x) := inf
u∈U

{
g(Cz x + Dzu)+ h(x)+ Eω(s)Vs+1 (Ax + Bu + K (s)ω(s))

}
(5.33)

with an initial condition:
VN+1(x) := ‖x‖2

Q

that has to be solved backwards from s = N to s = 0. The expression E (·) denotes
conditional expectation with respect to (·).

Proof: For the proof we refer to the proof of the theorem 4.4.2

An analytical computation of the expectation in (5.33) is generally difficult task and
we use the empirical mean as an alternative.

Definition 5.4.3 Assume a set � and a probability measure P on � are given. Let
f : � → � be a function measurable with respect to P where � is an interval on R n

(possibly equal to Rn ). Suppose that we draw m independent, identically distributed
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(i.i.d) samples ϑ = {θ1, · · · , θm} from � in accordance with P. The empirical mean
of the function f is given by:

Ê f := 1

m

m∑
j=1

f (θ j ). (5.34)

The cost computed via an empirical mean is given with:

Ĵ(x, π) := Ê

{∑
k∈T

{
g
(
Cz x̂N (k)+ Dz πk(x̂N (k))

)+ h(x̂N (k))
}+ ‖x̂N (N + 1)‖2

Q

}
.

(5.35)
The optimization problem 5.4.1 is replaced by the optimization in which we seek for
a minimum of the empirical cost (5.35) instead of the cost (5.30). The algorithm is
based on the following theorem (see [12]).

Theorem 5.4.4 Consider the optimization problem 5.4.1 in which the empirical cost
(5.35) is minimized instead of (5.30). Under assumptions 5.2.1 and the constraint
violation cost as defined in definition 5.3.2, the empirical optimal cost:

V̂ (x) := inf
π

Ĵ (x, π) (5.36)

and the associate vector of feedback mappings π can be obtained recursively as fol-
lows:

V̂s(x) := inf
u∈U

{
g(Czx + Dzu)+ h(x)+ Êν V̂s+1 (Ax + Bu + K (s)ω(s))

}
(5.37)

with an initial condition:
V̂N+1(x) := ‖x‖2

Q

that has to be solved backwards from s = N to s = 0. The expression Ê (·) denotes em-
pirical conditional expectation with respect to (·). The empirical optimal cost (5.36)
is obtained from (5.37) by V̂ (x) = V̂0(x).

To compute the empirical mean (5.37), a number of realizations of the innovation pro-
cess (5.28) is needed. The samples are chosen randomly, according to the distribution
of the innovation process ω. This method is called the Monte Carlo simulation. In the
following we explain how to perform the sampling of the innovation process.

Firstly, we take κ samples of ω(0) at s = 0. The random vector ω(0) is normally
distributed with zero mean and the covariance matrix given by (5.29) for k = 0.
Given κ samples of ω(0) there are κ possible states x̂ N (1). For each one of these
possible futures we generate κ samples of the disturbance ω(1) which establishes κ 2

possible future states x̂ N (2). By proceeding in this way, we obtain κ N samples of
the innovation process ω. The number of samples of ω grows exponentially with the
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horizon. The sampling as described is required for a good estimate of the optimal cost
to go Vs (5.33). One might conjecture that we do not need this because a very accurate
estimate of Vs is not required. Actually, only a good estimate of V0 is required, because
it determines π0. However, we have no proof that a restricted set of samples still yields
a correct result with a high probability.

Next, we present the algorithm by which the optimization problem 5.4.1 can be solved
by an use of the empirical mean computed via Monte Carlo simulations.

With the disturbance sampled as described at each s, s ∈ {0, · · · , N − 1} there are
κs possible states denoted by x̂ i

N (s), i ∈ {1, · · · , κs}. Denote a feedback controller
that achieves a finite cost (5.35) for the problem at hand with ϕ 0. Then, at each time
t = 1, 2, 3 · · · the following algorithm is executed.

Algorithm 5.1

Step 1: Initialization
Compute the optimal state estimate x ∗(t) and the estimated covariance matrix
P(t). Draw κ samples of ω(0) ∈ N (0,Cy P(t)CT

y + Qη). Set ûi (s) = ϕ0(xi
N (s))

for s = 0, 1, . . . , N , i = 1, . . . , N . Draw κ N samples for ω. Set V = ∞. Set
accuracy parameter ε. Set s = N .

Step 2: Compute cost ”to go”
Determine a new û i (s) by solving (5.37) for each x i

N (s), i = 1, . . . κ s . Compute

V̂s(xi
N (s)) for each i . If s = 0 go to step 4, otherwise set s = s − 1 and go to step

2.

Step 4: Exit condition
If |V̂0(x1

N (0))− V | < ε stop. Otherwise: set V = V̂0(x1
N (0)), set s = N and go

to step 2.

The remaining issue is the convergence of the solution obtained by algorithm 5.1.
Note again that the structure of the problem that we consider here is the same as the
structure of the problem considered in chapter 4 with the difference that the stochas-
tic of the prediction is determined by stpchastic properties of the innovation process
(5.28) instead of the disturbance as in the previous chapter. The convergence result
presented in theorem 4.5.5 can be applied to algorithm 5.1 with trivial modifications.

The computations of the covariance and the Monte Carlo simulation procedure in
algorithm 5.1 can be significantly simplified by exploiting asymptotic behaviour of
the Riccati equation (5.27). It can be shown that the solution of the Riccati equation
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converges to the matrix P given by

P = AP AT − APCT
y

(
Qη + Cy PCT

y

)−1
Cy P AT + E QwET . (5.38)

as k → ∞, under assumption 5.2.2. Moreover, if the matrix pair (A, E) is stabilizable,
the matrix P does not depend on the initial value Q t . The gain in (5.26) converge to a
fixed value K given by

K = APCT
y

(
Qη + Cy PCT

y

)−1
. (5.39)

Regarding the fact that the covariance (5.38) and the gain (5.39) are asymptotic quan-
tities, it seems overly optimistic to assume that the covariance and the gain in the
estimation structure (5.26) are equal to (5.38) and (5.39) given the finite control hori-
zon N . Note however, that the convergence of the covariance defined with (5.27) is in
most cases very fast. Moreover, the initial condition for the Riccati (5.27) equation is
the covariance matrix of the state estimate obtained from the Kalman filter (5.13) with
the covariance given by the Riccati equation (5.14) that also converge to an asymptotic
value.

5.5 Numerical Examples

5.5.1 Stochastic system with constrained input

We consider the plant with the model of the form (5.1) with:

A =

1.1269 −0.4940 0.1129

1 0 0
0 1 0


 B =


−0.3832

0.5919
0.5191




E =

1

0
0


 Cz =


0 0.7 0 0

0 0 0.7 0
0 0 0 0.7


 Dz = (

0.33 0 0 0
)

Cy = (
1 0 0

)
The disturbance and the measurement noise are mutually independent a normally dis-
tributed random variables with zero mean and variance 0.4 and 0.2 respectively:

w(t) ∈ N (0, 0.4) and η(k) ∈ N (0, 0.2).

The input to the plant u is assumed to be constrained for all t ∈ Z+ as

−0.2 ≤ u(t) ≤ 0.2.
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The state x is parameterized as:

x =

x1

x2
x3




It is assumed that the system has an initial state:

x(0) =

1

1
1


 .

To steer the system to the origin, we design the model predictive controller based on
algorithm 5.1. We use predictor (5.26) with the asymptotic gain K that can be easily
computed as

K =

0.3204

0.5807
0.8670


 .

The innovation process ω defined in (5.28) is a normally distributed stochastic process
with the zero mean and the covariance (5.29) that is computed as

Qω = 1.2165.

Next, we set the length of the control horizon N = 10. For the computation of the
empirical mean by Monte Carlo simulation we sample the innovation process accord-
ing to its distribution. We take 10 samples at the first time instant and 5 samples at
the second time instant in the control horizon. In this way, we obtain 50 samples of
the innovation process over the control horizon. The controller is then obtained by
algorithm 5.1. The input to the system at time t ∈ Z+ is then the first control obtained
from the vector of controls obtained by algorithm 5.1 at time t .

To access the performance of the stochastic predictive controller we perform 100 sim-
ulations. Each one of them is performed with different realization of the disturbance w
and the measurement noise η. The resulting mean of the state trajectories are plotted
on the figure 5.4 and the variance on the figure 5.5.

To compare the performance of the stochastic predictive controller we perform sim-
ulations in the same setting but with a standard predictive controller. The standard
model predictive controller is designed with assumption that the innovation process
takes its mean value over the control horizon i.e. we assume that the ω(k) = 0 for all
k ∈ N . The controller is then obtained by executing algorithm 5.1. Note that without
sampling of the disturbance the optimization performed by algorithm 5.1 is equivalent
with the optimization in the open loop i.e. standard approach to the optimization in
the model predictive control context. The mean of the obtained trajectories are plotted
on figure 5.4 and the variance the figure 5.5. Note that the mean of the trajectories for
both stochastic and standard model predictive controller show similar behaviour. The
improvement of the performance can be seen when the variance of the trajectories are
compared.
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Figure 5.4: The mean of the state trajectories
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Figure 5.5: The variance of the state trajectories

5.5.2 Stochastic system with constrained input and constraint
on the state

In this section we present an example in which we consider a “double integrator”
system of the form:

x(t + 1) =
(

1 0
1 1

)
x(t)+

(
1
0

)
u(t)+

(
1
0

)
w(t)

y(t) = (
0 1

)
x(t)+ η(t)

z(t) =

 0 0

0.7 0
0 0.7


 x(t)+


0.33

0
0


 u(t)

(5.40)



Page 125 of 155

5.5. Numerical Examples 121

The input is constrained as:

−0.5 ≤ u ≤ 0.5 u ∈ R.
The disturbance and the measurement noise are mutually independent normally dis-
tributed random variables with zero mean and variance 0.4 and 0.2 respectively:

w(k) ∈ N (0, 0.4) and η(k) ∈ N (0, 0.2).

The state x is parameterized as:

x =
(

x1
x2

)
and we impose a constraint on the state:

x2 ≥ 0. (5.41)

It is assumed that the system has an initial state:

x(0) =
(

0
10

)
.

The task is to steer the system (5.40), subject to the stochastic disturbance, from the
initial state to the origin with the constrained input while respecting constraint on
the state. Note that the "double integrator"system can be physically interpreted as a
system that describes the unit mass under influence of the force. The force is the input
to the system and the measurement output is the position of the mass. Initially the
mass is at rest at the position of 10 units. The position is the only measured state and
the constraint (5.41) is equivalent to

y(k) ≥ 0 ∀ k ∈ Z+.

The first task is to design the Kalman filter for the double integrator (5.40). This
task is straightforward, given the system and covariances of disturbances and the mea-
surement noise. The remaining task is to approximate the controller (5.6). To fulfill
this task we design the model predictive controller based on algorithm 5.1. We use
predictor (5.26) with the asymptotic gain K that can be easily computed as

K =
(

0.5857
1.4142

)
.

The innovation process ω defined in (5.28) is a normally distributed stochastic process
with the zero mean and the covariance (5.29) that is computed as

Qω = 1.1657.
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We choose:
g(z) = ‖z‖2 z ∈ R

3 (5.42)

and

h(x) =
{

0 if x2 ≥ 0

e4.5x2
2 − 1 if x2 < 0

x =
(

x1
x2

)
∈ R

2 (5.43)

With functions g and h as above, the controller minimizes the expectation of the
quadratic cost when the state is away from the constraint x 2 > 0. When the state
is near or on the boundary of the constraint the exponential constraint violation cost
h dominates and the main objective of the controller is to avoid a constraint violation.
The constraint violation cost h makes overall cost to be in �(R) class of functions
(see definition 4.3.1), with

R =
(

0 0
0 4.5

)
.

It can be easily verified that this choice of R satisfies solvability condition of theorem
4.3.5.

Next, we set the length of the control horizon N = 10. For the computation of the
empirical mean by Monte Carlo simulation we sample the innovation process accord-
ing to its distribution. We take 10 samples at the first time instant and 5 samples at
the second time instant in the control horizon. In this way, we obtain 50 samples of
the innovation process over the control horizon. The controller is then obtained by
algorithm 5.1. The input to the double integrator (5.40) at time t ∈ Z+ is then the first
control obtained from the vector of controls obtained by algorithm 5.1 at time t . In
the next time instant, the new measurement is taken and the state estimate obtained by
the Kalman filter (5.13). Algorithm 5.1 is then executed again, with the same number
of samples but with new initial values, to determine the input to the double integrator.

To access the performance of the stochastic predictive controller we perform 100 sim-
ulations. Each one of them is performed with different realization of the disturbance
w and the measurement noise η. The resulting measurement output trajectories y are
plotted on the figure 5.6.

To compare the performance of the stochastic predictive controller we perform the
simulations in the same setting but with the standard predictive controller. The stan-
dard model predictive controller is designed with assumption that the innovation pro-
cess takes its mean value over the control horizon i.e. we assume that the ω(k) = 0
for all k ∈ N . The controller is then obtained by executing algorithm 5.1. Note that
without sampling of the disturbance the optimization performed by algorithm 5.1 is
equivalent with the optimization in the open loop i.e. standard approach to the opti-
mization in the model predictive control context. The results of 100 simulations are
plotted on figure 5.7.

Note that controllers show very different performance. Standard standard MPC con-
troller is not able to realistically predict a possibility of the constraint violation, be-
cause of the assumption that the innovation of the state estimation in the “next time
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Figure 5.6: "Double integrator"is controlled by stochastic predictive controller
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Figure 5.7: “Double integrator” is controlled by standard predictive controller

step” over the control horizon is equal to the mean value of the innovation process,
in this case zero. A probability that ω will be larger than zero is high so for a large
number of trajectories prediction is not realistic. On the contrary, stochastic MPC con-
troller computes an optimal map from the state to the input for a number of points in
the state space. Points are determined with the stochastic sampling of the innovation
process and therefore there is a large probability that the optimal map for the predicted
states is computed in the region in which the estimated state of the system will be. This
leads to the more realistic “prediction” and the control strategy that respects the state
constraints better.

On figure 5.8 we plot the mean of obtained trajectories. Note that the mean trajectory
obtained by standard model predictive controller is a stable trajectory, but it converges
to the point that is in the region y < 0, i.e. does not respect the constraint on the output.
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Figure 5.8: The mean and the variance of the trajectories from figures 5.7 and 5.6
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Figure 5.9: Probability of the constraint violation

In contrary, the mean trajectory obtained by stochastic predictive controller converges
to the point in the region y ≥ 0. The point is larger than the set point. Stochastic
model predictive controller is designed to minimize the probability of the constraint
violation, which is the reason for an increased set point. Finally, on the figure 5.9 we
show the estimated probability of the constraint violation for both controllers.

5.6 Conclusion

In this chapter we consider optimal control of linear, constrained stochastic systems
via measurement feedback. We chose a controller from a set of strictly proper dynamic
controllers. The controller has three main tasks: to render the closed loop system
stable, to control the system so that constrains on the state are respected as much
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as possible and to minimize the performance measure when states are away from the
constraint boundary. Since the state is not available for the measurement it is necessary
to design a state estimator. The estimation has to be performed optimally, in the sense
that the estimation error should have the minimum variance. This estimator is well
known Kalman filter. A static feedback controller is than used to determine the input
to the system, based on the estimated state.

We show how this controller can be designed within the model predictive control
framework. To make prediction in the model predictive controller as realistic as pos-
sible, it is necessary to include the fact that we use the estimated state for the feedback
and not the true state of the system. Therefore, it is necessary to include the estimation
structure in the prediction. A difficulty is that there is no measurement available over
the control horizon. The innovation part of the Kalman filtering algorithm is consid-
ered as a stochastic process. This fact is taken into an account in optimization that is
performed in closed loop.

Finally, we present an example in which we use model predictive controller devel-
oped in this chapter on the double integrator system. The simulation results show
improved performance compared to the standard model predictive controller even for
the relatively small number of samples.
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6

Concluding remarks

Objectives of the final chapter in the thesis are to present a concise summary of contri-
butions that have been made in the thesis and to give a starting point for dealing with
open problems and topics that deserve to attract research attention in the future.

6.1 Summary of contributions

The main contributions in this thesis have been made with regard to the model pre-
dictive control of stochastic systems that are subject to constraints. Model predictive
controllers that have been developed in the previous chapters are aimed to solve a
more general problem of optimal control of stochastic, constrained systems. So far,
there is no satisfactory methodology proposed in the available literature for dealing
with such problems.

6.1.1 Model predictive control of constrained, stochastic sys-
tems

Stochastic disturbances can not be successfully rejected by standard model predictive
control algorithms that are based on the optimization in open loop. In this thesis, we
develop a novel approach to the model predictive control of such systems, that is based
on the optimization in closed loop over the control horizon and stochastic sampling of
the disturbance.

In chapter 3 we consider a case with a stochastic system that is subject to the con-
strained input. Model predictive controller developed in this chapter is based on the
stochastic model of the plant i.e. the stochastic disturbance is taken into account in the
prediction. As a consequence, the predicted state is stochastic. The cost function to be
minimized by the model predictive controller is a quadratic function and optimization
is assumed to be in closed loop i.e. it is a sequence of optimal feedback laws that have
to be computed over the control horizon, not a sequence of optimal inputs as in the
standard, open loop formulations of the model predictive control.

Finding a sequence of optimal feedback laws is a difficult problem to solve, not just
because it is infinite dimensional, but because we do not have a characterization of
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the class of optimal feedback laws. Result given in theorem 3.4.1 removes necessity
of the characterization of the optimal class of feedback laws, and lemma 3.4.3 shows
that a new optimization is a convex optimization problem. The optimization problem
is still infinite dimensional, however. A finite dimensionality can be achieved through
"quantization"of the state space, an approach commonly known as gridding. Since the
state is stochastic and the goal is to compute the empirical mean a grid that is based on
the stochastic sampling is more efficient than the grid that is based on, for example,
linear gridding. Stochastic sampling is the base of the algorithms that are known in
the literature as randomized algorithms. This form the basis of the algorithms 3.1 and
3.2 for model predictive control of stochastic systems with constrained inputs.

Simulation experiments have shown that even with the small number of samples algo-
rithms 3.1 and 3.2 perform better than standard model predictive control algorithms,
based on the optimization in open loop. The difference in the performance is in some
cases significant, as in the ill-conditioned plant example presented in section 3.6.2.
The price is significantly larger computational load, compared to the standard model
predictive control algorithms that are based on the optimization in open loop.

A natural extension of the approach presented in chapter 3 is to consider the con-
straint on the state in addition. A model predictive control algorithm for dealing with
this more general case is presented in chapter 4. To deal with the constraint on the
state, we add the constraint violation cost (see definition 4.2.3 and assumption 4.2.5).
The basic idea behind the constraint violation cost is to penalize the probability of the
constraint violation. The model predictive controller from chapter 4 is based on the op-
timization problem 4.4.1. The algorithm for the model predictive controller presented
in this chapter is based on the theorem 4.4.2. Important result is given in the theo-
rem 4.4.3 where we show that the optimization problem based on the theorem 4.4.2
is in fact a convex optimization problem. As in the case with only input constraints, a
finite dimensionality of the optimization problem is achieved through stochastic sam-
pling of the disturbance. Simulation examples show a significant improvement of the
performance when the model predictive controller based on the algorithm 4.1 is ap-
plied instead of the standard model predictive controller. Note that the performance
in this case is mainly measured with respect to the ability of a controller to respect
the constraint on the state, when the plant is subject to stochastic disturbance. The
standard model predictive controller does not exploit all available informations about
the stochastic disturbance and therefore it is not able to compete with the controller
based on the algorithm 4.1 even for a small number of disturbance samples.

Finally, in chapter 5 we design a model predictive controller within the framework
presented in chapters 3 and 4 but without assumption that the state of the plant is
available for feedback. Over the control horizon, we use the estimated state for the
prediction. In the standard model predictive control the model of the plant is used
for prediction and the estimated state is used as an initial state for the prediction. In
this way the prediction structure reflects better the way in which the plant is actually
controlled: by using estimated state as the true state of the system. The difficulty
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with the prediction structure proposed in chapter 5 is that the measurement output is
not available in prediction and the estimated state of the model is seen as a stochastic
variable. The algorithm (5.1) is different from the algorithms presented in chapters 3
and 4 in the nature of the sampling: instead of the disturbances as in the state feedback
case we sample the innovation process of the state estimator.

6.1.2 A novel problem formulation for the optimal control of con-
strained, stochastic systems

Today, stochastic control theory offers a fairly completed treatment for the various
control problems that deal with linear, unconstrained systems subject to a stochastic
disturbance. When one is faced with the control problems that involve stochastic
systems and constraints, there is a very limited number of techniques that are offered
in the available literature. In this thesis we propose a novel problem setup for the
optimal control of linear, stochastic, constrained systems. This problem setup is given
in chapter 4, section 4.2. The problem is posed as an optimal control problem, where
a controller has to be found so that the cost 4.7 is minimized. The cost consists of
two performance measures. The first one of them, the constraint violation cost, see
definition 4.2.3 and assumption 4.2.5, measures a probability of constraint violation,
and when this probability is high this measure dominates in the cost. An optimal
controller in this case minimizes the probability of constraint violation as a priority.
When the (stochastic) state is such that probability of constraint violation is not high,
the second measure dominates the cost and the optimal controller will control the
plant according to the desired control strategy. The resulting optimization problem is
formally defined as problem 4.2.4.

The first question that is posed with regard to the optimization problem 4.2.4 is the
question of its solvability. The class of feedbacks that solve the optimization problem
4.2.4 is formally defined in definition 4.3.2. Feedbacks in this class ensure that the
expectation of the performance measure with an exponential growth in the state is fi-
nite. The limitation on the exponential growth of the performance measure is imposed
by the covariance of the disturbance. This is a fundamental limitation when one deals
with the control of constrained stochastic systems i.e. it is not possible to achieve an
arbitrary small probability of the constraint violation.

Condition (4.14) is not easy to verify in the general setting. The case in which all in-
puts to the plant are constrained leads to the significant simplification of the condition.
In this, from application point of view very important case, the solvability condition
is given by a very simple relationship

(
At E

)T
R
(

At E
)− 1

4
Q−1

w < 0

for all t = 0, 1, 2 · · · . This condition relates the growth of the constraint violation cost
and the covariance matrix of the Gaussian disturbance.
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6.2 Outline of topics for further research

6.2.1 Optimal control of constrained, stochastic systems

As already mentioned, when the stochastic system is constrained, there is not much
that has been written in the available literature. The reason is that constraints make the
system nonlinear and analysis becomes difficult. In the model predictive control liter-
ature, a stochastic disturbance has been included in the problem setup from the early
proposals (see [40–43], for instance) so model predictive control can be seen as one
of the rarely available techniques for dealing with constrained, stochastic systems. As
shown in a couple of occasions in this thesis, standard model predictive controllers are
not suitable for dealing with stochastic, constrained systems, however. Optimization
in closed loop is essential but then the resulting optimization problem is difficult to
solve.

Model predictive control is just a technique that can be applied. There is obvious
necessity for an analysis of constrained stochastic systems in the general sense i.e.
independently of the technique that is used for the design of the controller. That is the
only way to discover fundamental limitations that a stochastic disturbance is posing
to the control of constrained systems. In this thesis, we have made first steps in this
direction. In chapter 4, section 4.2 we present a problem setup that consists of a linear
state space model of the plant (4.1) with a Gaussian white noise disturbance, a feed-
back controller (4.34), cost function (4.7) and the optimization problem 4.2.4. This
problem setup is general enough to capture a variety of possible practical problems
but simple enough to admit a mathematical analysis. Note that it is possible to "pe-
nalize"the probability of constraint violation directly in the cost, which is intuitively
more natural approach, but that would make mathematical analysis very difficult.

Solvability conditions presented in section 4.3 are derived for the case when all inputs
are constrained. This is very important case from the application point of view, but
the question of the general case, when the input is partially constrained, is still open
and it is a topic for further research.

Another issues are existence and uniqueness of solution in the state feedback case, pre-
sented in chapters 3 and 4, and the measurement feedback case presented in chapters
5.

6.2.2 Simplification and extensions to other classes of systems

Convergence results for the model predictive control algorithms presented in this the-
sis are valid when the number of samples is large. Simulation studies, on the other
hand, show that even with the small number of samples significant improvements
over the standard model predictive control algorithms can be achieved. An interest-
ing topic for further research would be to investigate the convergence properties of
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the algorithms with regard to the number of samples of the stochastic disturbance, in
the state feedback case, or the number of samples of the innovation process in the
measurement feedback case.

A significant simplification of model predictive controllers by randomized algorithms
can be achieved by an "a priori" parametrization of the feedback law over the control
horizon. This idea is outlined in section 3.5 where we assume that the feedback over
the control horizon is of the form of a linear feedback with saturation. The algorithm
derived in section 3.5 is significantly less computationally demanding than the original
algorithm from section 3.1 but the price is a loss of the performance. The resulting
optimization problem is a non-convex optimization problem which is an additional
difficulty.

Finally, future research directions for the model predictive control by randomized al-
gorithms are also in the extension of the class of the systems to which it is applied.
Application to the time-varying systems, important from the application point of view,
can be done almost straightforward. A more difficult but interesting topic for further
research is application of the methodology proposed in this thesis to the various classes
of hybrid systems.

6.2.3 Implementation of model predictive control by randomized
algorithms on real-world control problems

A difference in the performance between standard model predictive control and model
predictive control algorithms presented in this thesis is small when the disturbance
acting on the plant to be controlled is not significant. As simulation results presented
in chapters 3, 4 and 5 show, we can expect a significant performance improvement for
control problems in which constraints plays an important role and in which the plant
to be controlled is subject to a significant level of stochastic disturbances. This gives
a general framework in which we can look for real-world control problems that can
benefit from the algorithms presented in this thesis.

An application of the theoretical concept to the real-world control problem is never
straightforward. Model predictive control technique presented in this thesis gives a
number of possibilities to "tune" the optimization problem for the practical application
in hand. Therefore, implementation of stochastic model predictive control techniques
on real-world control problems is an important and broad topic for further research
efforts. In this short subsection we outline the basic "tuning knobs"of the methodology
presented in this thesis for a practically oriented researcher.

The first set of parameters that have to be chosen is well known from the standard
model predictive control setting. These parameters are the length of the control hori-
zon, a choice of the cost function and the matrix "weight" in the end point penalty.
Numerical examples presented in chapters 3, 4 and 5 show that parameters obtained
from the well designed model predictive controller are valuable starting points for
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choosing the length of the control horizon, the cost function and the end point penalty
in the stochastic model predictive control setting.

The second set of parameters that have to be chosen are specific for the model pre-
dictive control techniques presented in this thesis. For example, a number of samples
of the stochastic disturbance in the randomized algorithm. The larger is the number
of samples the larger is the accuracy of the algorithm. A large number of samples
gives a computationally demanding algorithm. Therefore, a designer is faced with the
tradeoff between a computational load and the performance of the algorithm. Note
that computational load does not depend only on the number of samples but also on
the length of the control horizon and the number of states of the system. This issues
are important topics for further research by itself, as outlined in section 6.2.2.

A constraint violation cost (see definition 4.2.3) is another choice that has to be made
by the designer. A rate of the exponential growth in the constraint violation cost
determines how well constraints on the state are respected despite the presence of
the stochastic disturbance. In the case when the set point is close to the constraint
boundary (which is very often the case in applications) it is possible that the constraint
violation cost will influence the optimum that is set by the performance measure (4.4).
The advice to the designer is to look at the cost (4.7) and to tailor the growth of the
constraint violation cost and the constraint set in order to achieve a desired behaviour.
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Summary

The main topic of this thesis is control of dynamic systems that are subject to stochas-
tic disturbances and constraints on the input and the state. The main motivation for
dealing with control of such systems is that there is no method available that ade-
quately deals with this problem, despite the fact that stochastic, constrained systems
are often encountered in real world problems. For example, in process industry the
margins of physical quantities such as temperature, pressure, concentration, velocity
and position can be expressed as amplitude constraints in a natural way. Such con-
straints are usually persistent in that suitable control actions need to be implemented
that respect these constraints irrespective of the presence of uncontrolled disturbances
that effect the system.

Goals of the thesis are to

1. Formulate a mathematical problem for the synthesis of a controller that will
achieve desired performance of the controlled system. More precisely, to mini-
mize a performance measure that captures desired performance while respecting
constraints in the face of stochastic disturbances.

2. Deduce verifiable conditions under which the problem formulated in 1. is solv-
able.

3. Formulate a solution concept for the problem in 1. that is based on the model
predictive control technique.

4. Create feasible computational algorithms for the synthesis of controllers that
solve control problems from 1. within the solution setup from 3.

5. Investigate convergence properties of the approximate solutions obtained by
computational algorithms from 4.

The main tool that is used in the thesis to solve the problem formulated in 1. is the
model predictive control technique. Model predictive control has had a significant and
widespread impact on industrial process control. When dealing with stochastic sys-
tems, however, application of the standard model predictive control algorithms results
in a significant loss in the controlled system performance. Therefore, to deal with
the problem 1. within the model predictive control framework, it was necessary to
develop alternative model predictive control techniques.

Contributions of the thesis are twofold. The first set of contributions is made with
regard to the model predictive control of constrained, stochastic systems. In this thesis,
we develop a novel approach to the model predictive control of such systems, that
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is based on the optimization in closed loop over the control horizon and stochastic
sampling of the disturbance i.e. a randomized algorithm.

The second set of contributions has been made in more general framework of the
optimal control of stochastic systems that are subject to input and state constraints.
We present a novel problem setup for control of such systems and give initial results
that are concerned with solvability conditions for the posed optimization problem and
the characterization of the optimal solution.
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Samenvatting

Dit proefschrift behandelt de regeling (of automatische besturing) van dynamische
systemen die beïvloed worden door stochastisch veronderstelde storingen en waar-
bij amplitude-begrenzingen op zowel actuator- als toestandsvariabelen gerespecteerd
dienen te worden. De belangrijkste motivatie voor de bestudering van dit type van
besturingssystemen is gelegen in het feit dat er geen geschikte technieken beschikbaar
zijn voor de synthese van regelaars voor dit soort regelproblemen. Dit, ondanks het feit
dat stochastische systemen en amplitude-begrenzingen op signalen veel voorkomen in
toepassingsgebieden. In de procesindustrie worden bijvoorbeeld de marges van fysis-
che grootheden zoals temperatuur, druk, concentratie, snelheid, en positie op een natu-
urlijke wijze uitgedrukt als amplitude-begrenzingen. Deze begrenzingen hebben vee-
lal een persistent karakter in de zin dat met gecontroleerde regelakties de begrenzingen
van fysieke grootheden gerespecteerd dienen te worden ongeacht de aanwezigheid van
ongecontroleerde stoorsignalen die op het proces inwerken.

De doelstellingen van dit proefschrift zijn als volgt:

1. Het formuleren van een wiskundig probleem voor de synthese van regelaars die
een gewenste prestatie van het geregelde systeem garanderen. Preciezer gezegd,
een mathematische formalisering van het probleem om een besturingssysteem
te ontwerpen dat een kostenfunctie minimaliseert, amplitude-begrenzingen van
fysische grootheden respecteert, en bovendien rekening houdt met de invloed
van stochastische verstoringen op het systeem.

2. Het afleiden van verifieerbare voorwaarden waaronder het probleem genoemd
in 1. oplosbaar is.

3. Het formuleren van een oplossingsconcept voor het probleem genoemd in 1. dat
gebruik maakt van technieken uit de theorie van model voorspellende regelaars
(model predictive control ).

4. Het genereren van bruikbare computer algoritmen voor de synthese van rege-
laars die het probleem genoemd in 1. oplossen met behulp van technieken ge-
noemd in 3.

5. Het onderzoeken van convergentie eigenschappen van approximatieve oplossin-
gen verkregen met de algoritmen genoemd in 4.

De belangrijkste methodologie die in dit proefschrift gebruikt is om het regelprobleem
genoemd in 1 op te lossen is de theorie van model voorspellende regelaars (model
predictive control ). Deze methodologie heeft een significante en grootschalige in-
vloed gehad op de procestechnologie waar het gaat om de automatische besturing van
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industriële processen. Echter, onder de veronderstelling dat dynamische processen
beïnvloed worden door stochastische storingen, resulteert de toepassing van standaard
model voorspellende regelaars in een significante degradatie van het gedrag van het
geregeld systeem. Om die reden is het noodzakelijk om alternatieve model voorspel-
lende regeltechnieken te ontwikkelen om het probleem genoemd in 1 op te kunnen
lossen.

Dit proefschrift kent hierin twee essentiële bijdragen. De eerste bijdrage betreft een
reeks resultaten gerelateerd aan de ontwikkeling van model voorspellende regelaars
van stochastische systemen met amplitude-begrenzingen. Dit proefschrift ontwikkelt
een nieuwe methodologie voor voorspellende regelaars voor deze klasse van syste-
men, gebaseerd op de optimalisatie van terugkoppel-wetten in gesloten lus over een
eindige regel-horizon en met gebruikmaking van een stochastische bemonstering van
verstoringssignalen.

De tweede bijdrage is gerelateerd aan de meer algemene aspecten die betrekking
hebben op het optimaal regelen van stochastische systemen met inachtneming van
persistente beperkingen op actuator signalen en toestandsvariabelen. Dit proefschrift
presenteert een nieuwe opzet voor de bestudering en analyse van dit soort systemen en
geeft initiële resultaten die enerzijds betrekking hebben op de oplosbaarheid van het
onderliggende optimalisatie probleem en anderzijds de karakterisatie en berekening
van optimale oplossingen.
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1. In model predictive control for stochastic systems the variance
of the predicted state can not be bounded by open loop control
strategies. Optimization over feedback strategies is therefore
crucial.

Chapter 3, this thesis

2. It is not possible to control a system that is subject to Gaus-
sian noise so that constraints on the state are violated with zero
probability.

Chapter 4, this thesis

3. The separation principle is not a principle but a theorem that
applies under specific assumptions.

Chapter 5, this thesis

4. New technologies are a product of multi-disciplinary scientific
research. Mathematics is the common foundation of technical
scientific disciplines. Therefore, an increased focus on mathe-
matics in higher education is necessary.

5. A scientific discipline needs an elite of dedicated scientists in
order to grow. However, when only members of the elite are
concerned about this growth further development of the scien-
tific discipline loses its raison d’être.

6. Consumer behavior is non-symmetric: Buyers of photo cam-
eras would not bother about built-in telephones but buyers of
mobile telephones do bother about built-in cameras.

7. There is a simple recipe to make periodic economic crises in
the consumer society less painful. Here it is: During the crisis,
consumers spend savings which they do not need buying goods
which they do not need. After the crisis, consumers stop buying
goods which they do not need and save money which they do
not need.

8. To encourage a more efficient use of personal cars, a govern-
ment can introduce a tax scheme that support a shared owner-
ship of vehicles. The tax that each owner pays, denoted as x , is
given by

x =

t

k N−1 N
(1)

where t is the total tax load on a car, N is the number of owners
of the car and k is the coefficient of encouragement. A person
can have only one car on which this scheme applies. For N
sufficiently large this means stimulation of public transport.

9. An affordable system of institutions for day nursery would have
benefit not only for the parents but also for the quality of school-
ing and health care in the country.

10. A productive life has change as its permanent feature.

11. A "life-style" program in elementary education is indispensable
for shaping positive moral values of the future generation. Its
success, however, is a test for today parents.
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