727 research outputs found

    NEMsCAM: A novel CAM cell based on nano-electro-mechanical switch and CMOS for energy efficient TLBs

    Get PDF
    In this paper we propose a novel Content Addressable Memory (CAM) cell, NEMsCAM, based on both Nano-electro-mechanical (NEM) switches and CMOS technologies. The memory component of the proposed CAM cell is designed with two complementary non-volatile NEM switches and located on top of the CMOS-based comparison component. As a use case for the NEMsCAM cell, we design first-level data and instruction Translation Lookaside Buffers (TLBs) with 16nm CMOS technology at 2GHz. The simulations show that the NEMsCAM TLB reduces the energy consumption per search operation (by 27%), write operation (by 41.9%) and standby mode (by 53.9%), and the area (by 40.5%) compared to a CMOS-only TLB with minimal performance overhead.We thank all anonymous reviewers for their insightful comments. This work is supported in part by the European Union (FEDER funds) under contract TIN2012-34557, and the European Union’s Seventh Framework Programme (FP7/2007-2013) under the ParaDIME project (GA no. 318693)Postprint (author's final draft

    Memristor-Based Resistive Random Access Memory: Hybrid Architecture for Low Power Compact Memory Design

    Get PDF
    The computer memory system has both volatile and non volatile memory. The Volatile memories such as SRAM and DRAM used as a main memory and non volatile memory like flash memory. But in recent days new non volatile technologies are invented that promise the rapid changes in the landscape of memory systems. Memristor is a two terminal passive element whose resistance depends on the magnitude and polarity of the voltage applied to it. It has nonlinear relationship between voltages and current which is similar to memory devices. In this paper we approach to design memristor based nonvolatile 6-T static random access memory (SRAM) and analysis the circuit performance with conventional 6-T SRAM cell in order to prove the parameter optimizations. Then we address the memristor-based resistive random access memory (MRRAM) which is similar to that of static random access memory (SRAM) cell and we compare the nonvolatile characteristics of MRRAM with SRAM cell. Index terms: NV memory, memristor, SRAM, Resistive RAM, SPICE model

    Potential and Challenges of Analog Reconfigurable Computation in Modern and Future CMOS

    Get PDF
    In this work, the feasibility of the floating-gate technology in analog computing platforms in a scaled down general-purpose CMOS technology is considered. When the technology is scaled down the performance of analog circuits tends to get worse because the process parameters are optimized for digital transistors and the scaling involves the reduction of supply voltages. Generally, the challenge in analog circuit design is that all salient design metrics such as power, area, bandwidth and accuracy are interrelated. Furthermore, poor flexibility, i.e. lack of reconfigurability, the reuse of IP etc., can be considered the most severe weakness of analog hardware. On this account, digital calibration schemes are often required for improved performance or yield enhancement, whereas high flexibility/reconfigurability can not be easily achieved. Here, it is discussed whether it is possible to work around these obstacles by using floating-gate transistors (FGTs), and analyze problems associated with the practical implementation. FGT technology is attractive because it is electrically programmable and also features a charge-based built-in non-volatile memory. Apart from being ideal for canceling the circuit non-idealities due to process variations, the FGTs can also be used as computational or adaptive elements in analog circuits. The nominal gate oxide thickness in the deep sub-micron (DSM) processes is too thin to support robust charge retention and consequently the FGT becomes leaky. In principle, non-leaky FGTs can be implemented in a scaled down process without any special masks by using “double”-oxide transistors intended for providing devices that operate with higher supply voltages than general purpose devices. However, in practice the technology scaling poses several challenges which are addressed in this thesis. To provide a sufficiently wide-ranging survey, six prototype chips with varying complexity were implemented in four different DSM process nodes and investigated from this perspective. The focus is on non-leaky FGTs, but the presented autozeroing floating-gate amplifier (AFGA) demonstrates that leaky FGTs may also find a use. The simplest test structures contain only a few transistors, whereas the most complex experimental chip is an implementation of a spiking neural network (SNN) which comprises thousands of active and passive devices. More precisely, it is a fully connected (256 FGT synapses) two-layer spiking neural network (SNN), where the adaptive properties of FGT are taken advantage of. A compact realization of Spike Timing Dependent Plasticity (STDP) within the SNN is one of the key contributions of this thesis. Finally, the considerations in this thesis extend beyond CMOS to emerging nanodevices. To this end, one promising emerging nanoscale circuit element - memristor - is reviewed and its applicability for analog processing is considered. Furthermore, it is discussed how the FGT technology can be used to prototype computation paradigms compatible with these emerging two-terminal nanoscale devices in a mature and widely available CMOS technology.Siirretty Doriast

    Performance Improvement for Reconfigurable Processor System Design in IoT Health Care Monitoring Applications

    Get PDF
    This research focuses on critical hardware components of an Internet of Things (IoT) system for reconfigurable processing systems. Single-Instruction Multiple-Data (SIMD) processors have recently been utilized to preprocess data at energy-constrained sensor nodes or IoT gateways, saving significant energy and bandwidth for transmission. Using traditional CPU-based systems to implement machine learning algorithms is inefficient in terms of energy consumption. In the proposed method Single-Instruction Multiple-Data (SIMD) processors are assembled by scaling the largest possible operand value subunits into direct access to the internal memory, where the carry output of each unit is conditionally fed into the next unit based on the implementation of the SIMD Processor design for Internet of Things applications. Each method has evaluated sub-operations that contribute considerably to the overall potential of the design. If the single register file can complete the intended action, a zero (one)-signal is applied to each unit\u27s carry input. Multiplexers combine two or more adders, sending the carry signal from one unit into another if additional units are necessary to compute the sum. The outcome results compare high-speed end device techniques in terms of area and power consumption. The proposed SIMD processor-based IoT healthcare monitoring system with a MIMD processor\u27s performance analysis of comparison clearly demonstrates that the system produces decent outcomes. The suggested system has an area overhead of 85 m2, a power usage of 4.10 W, and a time delay of 20 ns

    ELECTRICAL CHARACTERIZATION, PHYSICS, MODELING AND RELIABILITY OF INNOVATIVE NON-VOLATILE MEMORIES

    Get PDF
    Enclosed in this thesis work it can be found the results of a three years long research activity performed during the XXIV-th cycle of the Ph.D. school in Engineering Science of the Università degli Studi di Ferrara. The topic of this work is concerned about the electrical characterization, physics, modeling and reliability of innovative non-volatile memories, addressing most of the proposed alternative to the floating-gate based memories which currently are facing a technology dead end. Throughout the chapters of this thesis it will be provided a detailed characterization of the envisioned replacements for the common NOR and NAND Flash technologies into the near future embedded and MPSoCs (Multi Processing System on Chip) systems. In Chapter 1 it will be introduced the non-volatile memory technology with direct reference on nowadays Flash mainstream, providing indications and comments on why the system designers should be forced to change the approach to new memory concepts. In Chapter 2 it will be presented one of the most studied post-floating gate memory technology for MPSoCs: the Phase Change Memory. The results of an extensive electrical characterization performed on these devices led to important discoveries such as the kinematics of the erase operation and potential reliability threats in memory operations. A modeling framework has been developed to support the experimental results and to validate them on projected scaled technology. In Chapter 3 an embedded memory for automotive environment will be shown: the SimpleEE p-channel memory. The characterization of this memory proven the technology robustness providing at the same time new insights on the erratic bits phenomenon largely studied on NOR and NAND counterparts. Chapter 4 will show the research studies performed on a memory device based on the Nano-MEMS concept. This particular memory generation proves to be integrated in very harsh environment such as military applications, geothermal and space avionics. A detailed study on the physical principles underlying this memory will be presented. In Chapter 5 a successor of the standard NAND Flash will be analyzed: the Charge Trapping NAND. This kind of memory shares the same principles of the traditional floating gate technology except for the storage medium which now has been substituted by a discrete nature storage (i.e. silicon nitride traps). The conclusions and the results summary for each memory technology will be provided in Chapter 6. Finally, on Appendix A it will be shown the results of a recently started research activity on the high level reliability memory management exploiting the results of the studies for Phase Change Memories
    corecore