8 research outputs found

    Micro-manipulation of silicate micro-sized particles for biological applications.

    No full text
    International audienceThere are great challenges in biological research to study mechanical or chemical interactions between biological objects and artificial parts, to analyse the biocompatibility of artificial materials and/or to increase knowledge about biological cells. Some interaction studies between cells and artificial objects require to positioning very small objects whose typical size is comparable with cell's size (typically 5-20 micrometers). This paper presents design, building and testing of a new micro-manipulation station able to grasp, transport and release ten micrometers objects. Devoted to an existing piezoelectric microgripper, innovative end-effectors in silicon have been designed after several mechanical studies. They have been built with microfabrication processes (DRIE1) in SOI 2 wafers. For the application, the positioning of silicate crystals which contain iron close to E-Coli bacteria, new end-effectors were glued on the piezoelectric microgripper. Mounted on a three axis micropositioning stage under a videomicroscope, this innovative microgripper is able to grasp a silicate crystal of 15 micrometers in the aire and release it in the bacteria liquid medium

    Design of a Multi-Mode Hybrid Micro-Gripper for Surface Mount Technology Component Assembly

    Get PDF
    In the last few decades, industrial sectors such as smart manufacturing and aerospace have rapidly developed, contributing to the increase in production of more complex electronic boards based on SMT (Surface Mount Technology). The assembly phases in manufacturing these electronic products require the availability of technological solutions able to deal with many heterogeneous products and components. The small batch production and pre-production are often executed manually or with semi-automated stations. The commercial automated machines currently available offer high performance, but they are highly rigid. Therefore, a great effort is needed to obtain machines and devices with improved reconfigurability and flexibility for minimizing the set-up time and processing the high heterogeneity of components. These high-level objectives can be achieved acting in different ways. Indeed, a work station can be seen as a set of devices able to interact and cooperate to perform a specific task. Therefore, the reconfigurability of a work station can be achieved through reconfigurable and flexible devices and their hardware and software integration and control For this reason, significant efforts should be focused on the conception and development of innovative devices to cope with the continuous downscaling and increasing variety of the products in this growing field. In this context, this paper presents the design and development of a multi-mode hybrid micro-gripper devoted to manipulate and assemble a wide range of micro- and meso-SMT components with different dimensions and proprieties. It exploits two different handling technologies: the vacuum and friction

    Precision Handling of Electronic Components for PCB Rework

    Full text link

    Development of an expert system for supporting the selection of robot grippers

    Get PDF
    The aim of this thesis is to lay the basis for the development of an expert system for the selection of robot grippers. This work has started with a review of the literature of the grasping principles, of releasing strategies and of the main problems concerning the automatic assembly or, more in general, the handling. Later, we have studied a set of parameters constituting the input of the expert system, together with a set of rules aimed at choosing the appropriate gripper. The work ends with a series of tests, with a focus on the food industry, reporting the results and discussing the possibility of future developments

    Mikrofertigungstechnologien und ihre Anwendungen – ein theoretischer und praktischer Leitfaden

    Get PDF
    Dieses Buch beinhaltet Beiträge aus verschiedenen Bereichen der Mikrofertigungstechnologie und -ingenieurwesen und wurde im Rahmen des EU-Projektes MIMAN-T (Micro-manufacturing training for SMEs) verfasst. Dieses Buch richtet sich vorrangig an Techniker und zukünftige Fachkräfte, aber auch Studenten, die in diesem Gebiet tätig werden. Es soll als effektives Werkzeug dienen, dass dazu führt, dass wissenschaftliche Entwicklungen in konkrete industrielle Vorteile umgesetzt werden können
    corecore