7 research outputs found

    Distributionally Robust and Structure Exploiting Algorithms for Power System Optimization Problems

    Get PDF
    The modern power systems are undergoing profound changes as the large-scale integration of renewable energy and increasingly close interconnection of regional power grids. The intermittent renewable sources are bringing significant uncertainties to system operation so that all the analysis and optimization tools for the power system steady-state operation must be able to consider and manage the uncertainties. The large-scale interconnection of power systems increases the difficulty in maintaining the synchronization of all generators and further raises the challenging problem of systematically design multiple local and wide-area controllers. In both steady-state and dynamical problems, the large-scale interconnection is increasing the problem scale and challenging the scalability of analysis, optimization and design algorithms. This thesis addresses the problems of power system operation optimization under uncertainties and control parameter optimization considering time delays. The contributions are as follows. This thesis proposes data-driven distributionally robust models and algorithms for unit commitment, energy-reserve-storage co-dispatch and optimal power flow problems based on novel ambiguity sets. The problem formulations minimize the expected operation costs corresponding to the worst-case distribution in the proposed ambiguity set while explicitly considers spinning reserve, wind curtailment, and load shedding. Distributionally robust chance constraints are employed to guarantee reserve adequacy and system steady-state security. The construction of ambiguity set is data-driven avoiding presumptions on the probability distributions of the uncertainties. The specific structures of the problem formulation are fully exploited to develop a scalable and efficient solution method. To improve the efficiency of the algorithms to solve the operation and control optimization problems, this thesis investigates computational techniques to exploit special problem structures, including sparsity, chordal sparsity, group symmetry and parallelizability. By doing so, this thesis proposes a sparsity-constrained OPF framework to solve the FACTS devices allocation problems, introduces a sparsity-exploiting moment-SOS approach to interval power flow (IPF) and multi-period optimal power flow (MOPF) problems, and develops a structure-exploiting delay-dependent stability analysis (DDSA) method for load frequency control (LFC). The power system stabilizers (PSS) and FACTS controllers can be employed improve system damping. However, when time delays are considered, it becomes more difficult to analyzing the stability and designing the controllers. This thesis further develops time-domain methods for analysis and synthesis of damping control systems involving time delays. We propose a model reduction procedure together with a condition to ensure the Ï”\epsilon-exponential stability of the full-order system only using the reduced close-loop system model, which provides a theoretical guarantee for using model reduction approaches. Then we formulate the damping control design as a nonlinear SDP minimizing a carefully defined H2H_2 performance metric. A path-following method is proposed to coordinately design multiple damping controllers

    Aeronautical enginnering: A cumulative index to a continuing bibliography (supplement 312)

    Get PDF
    This is a cumulative index to the abstracts contained in NASA SP-7037 (301) through NASA SP-7073 (311) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled by the Center for AeroSpace Information of the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract number, report number, and accession number indexes

    A cumulative index to a continuing bibliography on aeronautical engineering

    Get PDF
    This bibliography is a cumulative index to the abstracts contained in NASA-SP-7037(184) through NASA-SP-7037(195) of Aeronautical Engineering: A Continuing Bibliography. NASA SP-7037 and its supplements have been compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). This cumulative index includes subject, personal author, corporate source, foreign technology, contract, report number, and accession number indexes

    IPNS upgrade: A feasibility study

    Full text link

    Aeronautical engineering: A cumulative index to a continuing bibliography (supplement 274)

    Get PDF
    This publication is a cumulative index to the abstracts contained in supplements 262 through 273 of Aeronautical Engineering: A Continuing Bibliography. The bibliographic series is compiled through the cooperative efforts of the American Institute of Aeronautics and Astronautics (AIAA) and the National Aeronautics and Space Administration (NASA). Seven indexes are included: subject, personal author, corporate source, foreign technology, contract number, report number, and accession number

    An aesthetic for sustainable interactions in product-service systems?

    Get PDF
    Copyright @ 2012 Greenleaf PublishingEco-efficient Product-Service System (PSS) innovations represent a promising approach to sustainability. However the application of this concept is still very limited because its implementation and diffusion is hindered by several barriers (cultural, corporate and regulative ones). The paper investigates the barriers that affect the attractiveness and acceptation of eco-efficient PSS alternatives, and opens the debate on the aesthetic of eco-efficient PSS, and the way in which aesthetic could enhance some specific inner qualities of this kinds of innovations. Integrating insights from semiotics, the paper outlines some first research hypothesis on how the aesthetic elements of an eco-efficient PSS could facilitate user attraction, acceptation and satisfaction

    Planetary Science Vision 2050 Workshop : February 27–28 and March 1, 2017, Washington, DC

    Get PDF
    This workshop is meant to provide NASA’s Planetary Science Division with a very long-range vision of what planetary science may look like in the future.Organizer, Lunar and Planetary Institute ; Conveners, James Green, NASA Planetary Science Division, Doris Daou, NASA Planetary Science Division ; Science Organizing Committee, Stephen Mackwell, Universities Space Research Association [and 14 others]PARTIAL CONTENTS: Exploration Missions to the Kuiper Belt and Oort Cloud--Future Mercury Exploration: Unique Science Opportunities from Our Solar System’s Innermost Planet--A Vision for Ice Giant Exploration--BAOBAB (Big and Outrageously Bold Asteroid Belt) Project--Asteroid Studies: A 35-Year Forecast--Sampling the Solar System: The Next Level of Understanding--A Ground Truth-Based Approach to Future Solar System Origins Research--Isotope Geochemistry for Comparative Planetology of Exoplanets--The Moon as a Laboratory for Biological Contamination Research--“Be Careful What You Wish For:” The Scientific, Practical, and Cultural Implications of Discovering Life in Our Solar System--The Importance of Particle Induced X-Ray Emission (PIXE) Analysis and Imaging to the Search for Life on the Ocean Worlds--Follow the (Outer Solar System) Water: Program Options to Explore Ocean Worlds--Analogies Among Current and Future Life Detection Missions and the Pharmaceutical/ Biomedical Industries--On Neuromorphic Architectures for Efficient, Robust, and Adaptable Autonomy in Life Detection and Other Deep Space Missions
    corecore