2,087 research outputs found

    Pulse interspersing in static multipath chip environments for Impulse Radio communications

    Get PDF
    Communications are becoming the bottleneck in the performance of Chip Multiprocessor (CMP). To address this issue, the use of wireless communications within a chip has been proposed, since they offer a low latency among nodes and high reconfigurability. The chip scenario has the particularity that is static, and the multipath can be known a priori. Within this context, we propose in this paper a simple yet very efficient modulation technique, based on Impulse Radio-On–Off-Keying (IR-OOK), which significantly optimizes the performance in Wireless Network-on-Chip (WNoC) as well as off-chip scenarios. This technique is based on interspersing information pulses among the reflected pulses in order to reduce the time between pulses, thus increasing the data rate. We prove that the final data rate can be considerably increased without increasing the hardware complexity of the transceiver.Peer ReviewedPostprint (published version

    Backscatter Transponder Based on Frequency Selective Surface for FMCW Radar Applications

    Get PDF
    This paper describes an actively-controlled frequency selective surface (FSS) to implement a backscatter transponder. The FSS is composed by dipoles loaded with switching PIN diodes. The transponder exploits the change in the radar cross section (RCS) of the FSS with the bias of the diodes to modulate the backscattered response of the tag to the FMCW radar. The basic operation theory of the system is explained here. An experimental setup based on a commercial X-band FMCW radar working as a reader is proposed to measure the transponders. The transponder response can be distinguished from the interference of non-modulated clutter, modulating the transponder’s RCS. Some FSS with different number of dipoles are studied, as a proof of concept. Experimental results at several distances are provided

    High-performance wireless interface for implant-to-air communications

    Get PDF
    Nous Ă©laborons une interface cerveau-machine (ICM) entiĂšrement sans fil afin de fournir un systĂšme de liaison directe entre le cerveau et les pĂ©riphĂ©riques externes, permettant l’enregistrement et la stimulation du cerveau pour une utilisation permanente. Au cours de cette thĂšse, nous explorons la modĂ©lisation de canal, les antennes implantĂ©es et portables en tant que propagateurs appropriĂ©s pour cette application, la conception du nouveau systĂšme d’un Ă©metteur-rĂ©cepteur UWB implantable, la conception niveau systĂšme du circuit et sa mise en oeuvre par un procĂ©dĂ© CMOS TSMC 0.18 um. En plus, en collaboration avec UniversitĂ© McGill, nous avons conçu un rĂ©seau de seize antennes pour une dĂ©tection du cancer du sein Ă  l’aide d’hyperfrĂ©quences. Notre premiĂšre contribution calcule la caractĂ©risation de canal de liaison sans fil UWB d’implant Ă  l’air, l’absorption spĂ©cifique moyennĂ©e (ASAR), et les lignes directrices de la FCC sur la densitĂ© spectrale de puissance UWB transmis. La connaissance du comportement du canal est nĂ©cessaire pour dĂ©terminer la puissance maximale permise Ă  1) respecter les lignes directrices ANSI pour Ă©viter des dommages aux tissus et 2) respecter les lignes directrices de la FCC sur les transmissions non autorisĂ©es. Nous avons recours Ă  un modĂšle rĂ©aliste du canal biologique afin de concevoir les antennes pour l’émetteur implantĂ© et le rĂ©cepteur externe. Le placement des antennes est examinĂ© avec deux scĂ©narios contrastĂ©s ayant des contraintĂ©s de puissance. La performance du systĂšme au sein des tissus biologiques est examinĂ©e par l’intermĂ©diaire des simulations et des expĂ©riences. Notre deuxiĂšme contribution est dĂ©diĂ©e Ă  la conception des antennes simples et Ă  double polarisation pour les systĂšmes d’enregistrement neural sans fil Ă  bande ultra-large en utilisant un modĂšle multicouches inhomogĂšne de la tĂȘte humaine. Les antennes fabriquĂ©es Ă  partir de matĂ©riaux flexibles sont plus facilement adaptĂ©es Ă  l’implantation ; nous Ă©tudions des matĂ©riaux Ă  la fois flexibles et rigides et examinons des compromis de performance. Les antennes proposĂ©es sont conçues pour fonctionner dans une plage de frĂ©quence de 2-11 GHz (ayant S11-dessous de -10 dB) couvrant Ă  la fois la bande 2.45 GHz (ISM) et la bande UWB 3.1-10.6 GHz. Des mesures confirment les rĂ©sultats de simulation et montrent que les antennes flexibles ont peu de dĂ©gradation des performances en raison des effets de flexion (en termes de correspondance d’impĂ©dance). Finalement, une comparaison est rĂ©alisĂ©e entre quatre antennes implantables, couvrant la gamme 2-11 GHz : 1) une rigide, Ă  la polarisation simple, 2) une rigide, Ă  double polarisation, 3) une flexible, Ă  simple polarisation et 4) une flexible, Ă  double polarisation. Dans tous les cas une antenne rigide est utilisĂ©e Ă  l’extĂ©rieur du corps, avec une polarisation appropriĂ©e. Plusieurs avantages ont Ă©tĂ© confirmĂ©s pour les antennes Ă  la polarisation double : 1) une taille plus petite, 2) la sensibilitĂ© plus faible aux dĂ©salignements angulaires, et 3) une plus grande fidĂ©litĂ©. Notre troisiĂšme contribution fournit la conception niveau systĂšme de l’architecture de communication sans fil pour les systĂšmes implantĂ©s qui stimulent simultanĂ©ment les neurones et enregistrent les rĂ©ponses de neurones. Cette architecture prend en charge un grand nombre d’électrodes (> 500), fournissant 100 Mb/s pour des signaux de stimulation de liaison descendante, et Gb/s pour les enregistrements de neurones de liaison montante. Nous proposons une architecture d’émetteur-rĂ©cepteur qui partage une antenne ultra large bande, un Ă©metteur-rĂ©cepteur simplifiĂ©, travaillant en duplex intĂ©gral sur les deux bandes, et un nouveau formeur d’impulsions pour la liaison montante du Gb/s soutenant plusieurs formats de modulation. Nous prĂ©sentons une dĂ©monstration expĂ©rimentale d’ex vivo de l’architecture en utilisant des composants discrets pour la rĂ©alisation les taux Gb/s en liaison montante. Une bonne performance de taux d’erreur de bit sur un canal biologique Ă  0,5, 1 et 2 Gb/s des dĂ©bits de donnĂ©es pour la tĂ©lĂ©mĂ©trie de liaison montante (UWB) et 100 Mb/s pour la tĂ©lĂ©mĂ©trie en liaison descendante (bande 2.45 GHz) est atteinte. Notre quatriĂšme contribution prĂ©sente la conception au niveau du circuit d’un dispositif d’émission en duplex total qui est prĂ©sentĂ©e dans notre troisiĂšme contribution. Ce dispositif d’émission en duplex total soutient les applications d’interfaçage neural multimodal et en haute densitĂ© (les canaux de stimulant et d’enregistrement) avec des dĂ©bits de donnĂ©es asymĂ©triques. L’émetteur (TX) et le rĂ©cepteur (RX) partagent une seule antenne pour rĂ©duire la taille de l’implant. Le TX utilise impulse radio ultra-wide band (IR-UWB) basĂ© sur une approche alliant des bords, et le RX utilise un nouveau 2.4 GHz rĂ©cepteur on-off keying (OOK).Une bonne isolation (> 20 dB) entre le trajet TX et RX est mis en oeuvre 1) par mise en forme des impulsions transmises pour tomber dans le spectre UWB non rĂ©glementĂ© (3.1-7 GHz), et 2) par un filtrage espace-efficace du spectre de liaison descendante OOK dans un amplificateur Ă  faible bruit RX. L’émetteur UWB 3.1-7 GHz peut utiliser soit OOK soit la modulation numĂ©rique binaire Ă  dĂ©placement de phase (BPSK). Le FDT proposĂ© offre une double bande avec un taux de donnĂ©es de liaison montante de 500 Mbps TX et un taux de donnĂ©es de liaison descendante de 100 Mb/s RX, et il est entiĂšrement en conformitĂ© avec les standards TSMC 0.18 um CMOS dans un volume total de 0,8 mm2. Ainsi, la mesure de consommation d’énergie totale en mode full duplex est de 10,4 mW (5 mW Ă  100 Mb/s pour RX, et de 5,4 mW Ă  500 Mb/s ou 10,8 PJ / bits pour TX). Notre cinquiĂšme contribution est une collaboration avec l’UniversitĂ© McGill dans laquelle nous concevons des antennes simples et Ă  double polarisation pour les systĂšmes de dĂ©tection du cancer du sein Ă  l’aide d’hyperfrĂ©quences sans fil en utilisant un modĂšle multi-couche et inhomogĂšne du sein humain. Les antennes fabriquĂ©es Ă  partir de matĂ©riaux flexibles sont plus facilement adaptĂ©es Ă  des applications portables. Les antennes flexibles miniaturisĂ©es monopĂŽles et spirales sur un 50 um Kapton polyimide sont conçus, en utilisant high frequency structure simulator (HFSS), Ă  ĂȘtre en contact avec des tissus biologiques du sein. Les antennes proposĂ©es sont conçues pour fonctionner dans une gamme de frĂ©quences de 2 Ă  4 GHz. Les mesures montrent que les antennes flexibles ont une bonne adaptation d’impĂ©dance dans les diffĂ©rentes positions sur le sein. De Plus, deux antennes Ă  bande ultralarge flexibles 4 × 4 (simple et Ă  double polarisation), dans un format similaire Ă  celui d’un soutien-gorge, ont Ă©tĂ© dĂ©veloppĂ©s pour un systĂšme de dĂ©tection du cancer du sein basĂ© sur le radar.We are working on a fully wireless brain-machine-interface to provide a communication link between the brain and external devices, enabling recording and stimulating the brain for permanent usage. In this thesis we explore channel modeling, implanted and wearable antennas as suitable propagators for this application, system level design of an implantable UWB transceiver, and circuit level design and implementing it by TSMC 0.18 um CMOS process. Also, in a collaboration project with McGill University, we designed a flexible sixteen antenna array for microwave breast cancer detection. Our first contribution calculates channel characteristics of implant-to-air UWB wireless link, average specific absorption rate (ASAR), and FCC guidelines on transmitted UWB power spectral density. Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulations and experiments. Our second contribution deals with designing single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2–11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1–10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity. Our third contribution provides system level design of wireless communication architecture for implanted systems that simultaneously stimulate neurons and record neural responses. This architecture supports large numbers of electrodes (> 500), providing 100 Mb/s for the downlink of stimulation signals, and Gb/s for the uplink neural recordings. We propose a transceiver architecture that shares one ultra-wideband antenna, a streamlined transceiver working at full-duplex on both bands, and a novel pulse shaper for the Gb/s uplink supporting several modulation formats. We present an ex-vivo experimental demonstration of the architecture using discrete components achieving Gb/s uplink rates. Good bit error rate performance over a biological channel at 0.5, 1, and 2 Gbps data rates for uplink telemetry (UWB) and 100 Mbps for downlink telemetry (2.45 GHz band) is achieved. Our fourth contribution presents circuit level design of the novel full-duplex transceiver (FDT) which is presented in our third contribution. This full-duplex transceiver supports high-density and multimodal neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates. The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (> 20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by spaceefficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18 um CMOS within a total size of 0.8 mm2. The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Our fifth contribution is a collaboration project with McGill University which we design single and dual-polarization antennas for wireless ultra-wideband breast cancer detection systems using an inhomogeneous multi-layer model of the human breast. Antennas made from flexible materials are more easily adapted to wearable applications. Miniaturized flexible monopole and spiral antennas on a 50 um Kapton polyimide are designed, using a high frequency structure simulator (HFSS), to be in contact with biological breast tissues. The proposed antennas are designed to operate in a frequency range of 2–4 GHz (with reflection coefficient (S11) below -10 dB). Measurements show that the flexible antennas have good impedance matching while in different positions with different curvature around the breast. Furthermore, two flexible conformal 4×4 ultra-wideband antenna arrays (single and dual polarization), in a format similar to that of a bra, were developed for a radar-based breast cancer detection system

    Fully Printable Chipless RFID Tag

    Get PDF

    Small Antenna Options for Ultra-Wideband (UWB) Applications

    Get PDF
    Ultra-Wideband (UWB) systems provide a means for short range high data rate wireless transmission between electronic devices. Portable devices and in particular, mobile handsets, have the potential to harness the unprecedented connectivity associated with UWB’s high speed, low power data transfer. Over the course of this work, a number of small antenna options for UWB mobile handset applications are presented. Two key subgroups of the 3.1 –10.6GHz UWB band are chosen and suitable antennas designed for both bands. At the upper end of the band, a ceramic planar inverted-F antenna is proposed to cover band groups 3 & 6 (6.3 – 9GHz). At the lower end of the band, a novel Dual-Band PIFA structure is presented and optimised to cover the band group 1 bands (3.1 – 4.8GHz). Design work is carried out using CST Microwave Studio simulation software, and all parameter sweeps of critical dimensions are presented, as well as an in-depth examination of E-fields, Surface Currents and Radiation Patterns for both antennas. Finally measurement prototypes are built up and measured to validate the simulation data. Correlation between measured and simulated results is observed and the performance of the antennas with respect to typical UWB antenna specifications is discussed

    Feasibility Study and Design of a Wearable System-on-a-Chip Pulse Radar for Contactless Cardiopulmonary Monitoring

    Get PDF
    A new system-on-a-chip radar sensor for next-generation wearable wireless interface applied to the human health care and safeguard is presented. The system overview is provided and the feasibility study of the radar sensor is presented. In detail, the overall system consists of a radar sensor for detecting the heart and breath rates and a low-power IEEE 802.15.4 ZigBee radio interface, which provides a wireless data link with remote data acquisition and control units. In particular, the pulse radar exploits 3.1–10.6 GHz ultra-wideband signals which allow a significant reduction of the transceiver complexity and then of its power consumption. The operating principle of the radar for the cardiopulmonary monitoring is highlighted and the results of the system analysis are reported. Moreover, the results obtained from the building-blocks design, the channel measurement, and the ultra-wideband antenna realization are reported
    • 

    corecore