5,107 research outputs found

    The design and implementation of a multimedia storage server tosupport video-on-demand applications

    Get PDF
    In this paper we present the design and implementation of a client/server based multimedia architecture for supporting video-on-demand applications. We describe in detail the software architecture of the implementation along with the adopted buffering mechanism. The proposed multithreaded architecture obtains, on one hand, a high degree of parallelism at the server side, allowing both the disk controller and the network card controller work in parallel. On the other hand; at the client side, it achieves the synchronized playback of the video stream at its precise rate, decoupling this process from the reception of data through the network. Additionally, we have derived, under an engineering perspective, some services that a real-time operating system should offer to satisfy the requirements found in video-on-demand applications.This research has been supported by the Regional Research Plan of the Autonomus Community of Madrid under an F.P.I. research grant.Publicad

    Efficient memory management in VOD disk array servers usingPer-Storage-Device buffering

    Get PDF
    We present a buffering technique that reduces video-on-demand server memory requirements in more than one order of magnitude. This technique, Per-Storage-Device Buffering (PSDB), is based on the allocation of a fixed number of buffers per storage device, as opposed to existing solutions based on per-stream buffering allocation. The combination of this technique with disk array servers is studied in detail, as well as the influence of Variable Bit Streams. We also present an interleaved data placement strategy, Constant Time Length Declustering, that results in optimal performance in the service of VBR streams. PSDB is evaluated by extensive simulation of a disk array server model that incorporates a simulation based admission test.This research was supported in part by the National R&D Program of Spain, Project Number TIC97-0438.Publicad

    Efficient memory management in video on demand servers

    Get PDF
    In this article we present, analyse and evaluate a new memory management technique for video-on-demand servers. Our proposal, Memory Reservation Per Storage Device (MRPSD), relies on the allocation of a fixed, small number of memory buffers per storage device. Selecting adequate scheduling algorithms, information storage strategies and admission control mechanisms, we demonstrate that MRPSD is suited for the deterministic service of variable bit rate streams to intolerant clients. MRPSD allows large memory savings compared to traditional memory management techniques, based on the allocation of a certain amount of memory per client served, without a significant performance penaltyPublicad

    Mobile-Based Video Caching Architecture Based on Billboard Manager

    Full text link
    Video streaming services are very popular today. Increasingly, users can now access multimedia applications and video playback wirelessly on their mobile devices. However, a significant challenge remains in ensuring smooth and uninterrupted transmission of almost any size of video file over a 3G network, and as quickly as possible in order to optimize bandwidth consumption. In this paper, we propose to position our Billboard Manager to provide an optimal transmission rate to enable smooth video playback to a mobile device user connected to a 3G network. Our work focuses on serving user requests by mobile operators from cached resource managed by Billboard Manager, and transmitting the video files from this pool. The aim is to reduce the load placed on bandwidth resources of a mobile operator by routing away as much user requests away from the internet for having to search a video and, subsequently, if located, have it transferred back to the user.Comment: 8 pages, 1 figure, GridCom-201

    Minimizing buffer requirements in video-on-demand servers

    Get PDF
    23rd Euromicro Conference EUROMICRO 97: 'New Frontiers of Information Technology', Budapest, Hungary, 1-4 Sept 1997Memory management is a key issue when designing cost effective video on demand servers. State of the art techniques, like double buffering, allocate buffers in a per stream basis and require huge amounts of memory. We propose a buffering policy, namely Single Pair of Buffers, that dramatically reduces server memory requirements by reserving a pair of buffers per storage device. By considering in detail disk and network interaction, we have also identified the particular conditions under which this policy can be successfully applied to engineer video on demand servers. Reduction factors of two orders of magnitude compared to the double buffering approach can be obtained. Current disk and network parameters make this technique feasible.Publicad

    Architecture for Cooperative Prefetching in P2P Video-on- Demand System

    Full text link
    Most P2P VoD schemes focused on service architectures and overlays optimization without considering segments rarity and the performance of prefetching strategies. As a result, they cannot better support VCRoriented service in heterogeneous environment having clients using free VCR controls. Despite the remarkable popularity in VoD systems, there exist no prior work that studies the performance gap between different prefetching strategies. In this paper, we analyze and understand the performance of different prefetching strategies. Our analytical characterization brings us not only a better understanding of several fundamental tradeoffs in prefetching strategies, but also important insights on the design of P2P VoD system. On the basis of this analysis, we finally proposed a cooperative prefetching strategy called "cooching". In this strategy, the requested segments in VCR interactivities are prefetched into session beforehand using the information collected through gossips. We evaluate our strategy through extensive simulations. The results indicate that the proposed strategy outperforms the existing prefetching mechanisms.Comment: 13 Pages, IJCN

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends
    corecore