
Minimizing Buffer Requirements in Video-on-Demand Servers

Albert0 Garcia-Martinez?, Anastasio Molano', David Siinchez?, &gel Viiia*

+Dep. de Electr6nica y S is temas , Universidad Alfonso X el Sabio. Email: [agarcia,
dsanchez] @ uax.es

'Dep. de Ing. Informitica, Universidad Aut6noma de Madrid. amolano@cesat.es.

*Departamento de Electrbnica y Sistemas, Universidad de La Coruiia. avc@des.fi.udc.es.

Abstract.
Memory management is a key issue when designing cost-effective video-on-demand servers.

State-of-the-art techniques, like double-buffering, allocate buffers in a per-stream basis and
require huge amounts of memory. In this paper, we propose a buffering policy, namely Single
Pair of Buffers, that reduces dramatically server memory requirements by reserving a pair of
buffers per storage device. By considering in detail disk and network interaction we have also
identified the particular conditions under which this policy can be successfully applied to
engineer Video-On-Demand servers. Reduction factors of two orders of magnitude compared to
the double-buffering approach can be obtained. Current disk and network parameters make this
technique feasible.

1: Introduction

Video servers must deliver a great number of continuous media streams (large files) to several
unrelated clients in a predictable fashion. Among the factors that affect both cost and
performance of Video-On-Demand (hereafter VOD) servers, memory management is an
outstanding issue. It would be desirable to provide gap-free playback to as many clients as
possible while minimizing the amount of memory required on the server.

We will consider the service of Constant Bit Rate (CBR) compressed video streams (e.g.,
MPEG-1). The streams are supposed to be stored in a single disk, although the conclusions can
be easily extended to disk array storage units. A scheduling policy is required to guarantee that
clients are served within their corresponding deadlines. The definition of a global penod for the
service of stream requests in rounds is an efficient scheduling policy. Disk data placement can
be taken into account to limit the time spent in disk head movements, and as a result to increase
performance Among the proposed disk-scheduling policies, we will use for our analysis, due to
its simplicity, Circular SCAN (C-SCAN), a variation of the elevator scheduling policy. We want
to note that any scheduling policy can be combined with the buffering techniques described on
the paper, since both problems are orthogonal.

Current buffering techniques rely on per-stream buffering: each stream reserves memory for
buffering purposes. The most widespread per-stream buffering policy is double-buffering. The
buffering policies described below claim to reduce server's buffer requirements by using per-
device buffering instead of per-stream buffering. Few implementations [11, 121 have taken this
approach that lead to substantial memory savings in a trade-off with simplicity. However, the
feasibility of these techniques, which depends on hardware and software factors related mainly
with disk and network, has not been properly characterized. The main contributions of our work

\

68 0-8186-8215-9/97 $10.00 0 1997 IEEE

are (1) the proposal of the technique Single Pair of Buffers and (2) the study of the conditions
that make per-device buffering techniques viable, paying special attention to diisk / network
interaction.

The rest of the paper is organized as follows. Section 2 reviews the double-buffering
approach. Section 3 describes the Single Pair of Buffers policy, by studying the conditions that
make this technique feasible. Next section deals with related work. Finally we present some
conclusions and future work.

2: Cyclic scheduling and double-buffering

Table 1 shows the parameters that model a server performing double-buffering within a cyclic
scheduler. We will consider a single SCSI disk architecture although an extension for sets of
disks can be easily developed.

On each round the opened sessions retrieve from disk the data required to maintain playback
for the next cycle. The number of bytes read in ti should equal the amount that will be requested
for. playback for next period, in order to avoid both starvation and buffer overflow. As Ri is
constant in CBR streams

ti Rdisk = Ri T (1)

During T, the system has to perform disk transactions for every stream. We must include the
time spent in disk head movements, rotation, and processing overhead L h k ov (that accounts for
interrupt response, task management,' disk controller setup, and data copying). The minimum
period needed to be able to serve N concurrent sessions is:

-

N N-1

T = cti+ C S i , i + l + S N , l + L d i s k _ o v (")
i = l i = l

TABLE 1. Scheduling parameters

Period of the global cycle

Consumption rate of stream i

Number of traversed tracks when switch-
ing from stream i to stream j

Disk buffer allocated to stream i

I(M I Server's memory consumption II 1) R& I Disk transfer rate

Network transfer rate

processing (in-
bal cycle

Eme to switch from stream i to stream
j (seek + rotation)

Disk latency when switchingfrom
stream i to j

La-& Maximum delay that the network intelface
may suffer when transmitting information

The global period T is a fixed magnitude that depends exclusively on N , not on the actual
number of streams served [3]. Tis limited by client start-up latency (considerations, since a new
client must wait one or two cycles - depending on the scheduling policy adopted - before being
able to play the first frame.

69

The size of the buffer required to maintain data for T seconds is computed as
B i = ' i R d j s k (3)

To simplify, we will suppose that each disk head movement requires a fixed starting time
L h . j , plus a linear distance-dependent time L a - ,,(distance can be measured as the number of
traversed tracks). The first factor is the minimum seek time. In the second we include the rotation
time of the disk. Therefore, the overhead incurred when switching from one stream to another is.

L- 1.1 Ld i sk f + Ld;sk-v j (4)

[7] have proposed more accurate models with a non-linear relation between distance and time
due to the inertia of the disk head movement when starting and stopping. However, the model
exposed above is precise enough to the extent of our discussion.

We will assume that the blocks of the same multimedia content retrieved in the same cycle are
stored contiguously, and that their reading is performed at a constant rate. We are not considering
the effect of zones with different transfer rates.

Since the disk access policy i s C-SCAN, the head performs, at most, two sweeps along the
entire disk surface on each cycle:

N- 1

C S i , i + l f S N , I = N L d i s k f f 2 L d i s k - v V (5)
i = l

Hence, equation (2) can be rewritten as
N

= c t i + L d i s k f + Ldisk-v '+ Ldisk-ov (6)
i = 1

Equations (l) , (3) and (6) let us check the feasibility of a given set of streams, and compute
the total buffer requirement M . M depends on the memory management policy. Double-buffering
is a per-stream buffering technique based on the cooperation of two buffers. In the server, the
first buffer is filled with data retrieved from disk, while the information stored in the second
buffer is being read by a network UO device. When the cycle ends, buffers change their role.

To have an idea of the total amount of memory required we will suppose, without loss of
generality, that all the streams demand information at the same rate. Equation (6) tums into

= -b L d i s k f + Ldisk -vV+ Ldisk-ov (')

Since we apply double-buffering and the streams demand the same rate, the total memory
consumption is

N

M = 2 z B i = 2 N B i (8)
i = 1

By combining equations (l), (3), (7) and (X), we can obtain a relation between N and M ,
displayed in figures 1 and 2. Data is based on a typical workstation disk, a Seagate ST31200W
(transfer rate: 3.88 MBytes/s). The different curves are built with disks with the same latency
parameters, but increased transfer rates. These curves may represent either higher performance
single disks or disk arrays. We have evaluated the maximum number of streams that can be
accepted and the duration of the global cycle in this case, versus total memory consumption. We
have considered a MPEG-1 stream rate (RJ of 1.5 Mbits/s. L&k ov was measured in a Sun
SPARC 20 machine running Solaris 2.5: 400 microseconds.

In figure 1 we can see that buffer increments turn into better disk exploitation, and thus, into
more users being serviced. But great buffer sizes also influence cycle time negatively (figure 2).
As disk transfer rate grows, more sessions can be accepted, but more memory is needed
(hundreds of MBytes).

-

70

0 2 W 4 W 600 800 1000 1203
Memory (MByles)

0 200 400 6 W 800 1OW 1200
Memory (MByler)

Figure 1: Number of streams served
vs. memory consumption memory c:onsumption

Figure 2: Global period vs.

3: Single pair of buffers

Memory usage can be reduced by replacing the set of per-stream buffer pairs with a single pair
of buffers per storage unit. While buffer (a) receives the information from disk for the stream
i+ 1, the data already stored in its peer buffer (b) for the stream i, is being delivered to the network
device. We call this technique Single Pair ofBuffeers policy. The size of the buffer is chosen to
be able to cope with the largest transfer, so M can be computed in the following way:

M a x (B i) = T M a x (R i) (9) M = 2 T M a J r (R i) (10)

In the implementation of this solution the SCSI controller is programmed .with all the
transactions that are to be executed in a cycle. When the disk finishes the retrieval of the data
that corresponds to one stream the controller will generate an interrupt to start the delivery of the
acquired data over the network. Network transfers are activated after a certain delay (L , &,
comprised of the time taken to execute the interrupt code and the tiime required foir issuing the
transference, which embodies network protocol processing.

For a proper timing, we have to characterize the hardware elements involved.
Network interfaces with buffer sizes of 64 KBytes or less are common. The network device

uses DMA to access to main memory when the buffer is close to exhiaustion. DMA operation is
performed in parallel with network sending.

If data delivering is done in a row, once the network is available, we can establish1 a condition
to guarantee, for all the streams being serviced, that the network is able to drain its b'uffer before
the buffer switch occurs. The switch will occur after the filling of the peer buffer for the next
stream by the disk. In the worst case, the network must drain the maximum buffer si:ze, Max(Bi),
before the server had read from disk an amount of information equal to the minimum buffer size,
Min(Bi). This condition guarantees the continuous playback.

T Min (R i) T Max (Ri)
Ldiskf ' - > Lsw-net + ~ + Lacc-nrr

' d i sk ' n e ,
(11

T Min (R i) T Max (Ri)
Ldiskf ' - > Lsw-net + ~ + Lacc-nrr

' d i sk ' n e ,
(11

Generally, YO operations are performed in parallel with bus transactions. For example, the
disk reads and places the data in its buffer, while it is sending previously read data to the memory
using DMA. Bus times could become important if one of the YO interfaces (disk or network) had
to wait until the completion of the bus operation of the other, but this is not the case with cycle
stealing DMA. If there are bus conflicts, they are likely to be distributed equally b'etween disk
and network. Some studies confirm that YO bus influence is at most of second order [SI.

If the producer (the disk) is faster than the consumer (the network), the system is not properly

71

balanced, and we must develop a contention mechanism for the first, or increase network
bandwidth. In our analysis we have supposed that network transfer rate, R,, is at least equal to
disk transfer rate R h k .

For applying Single Pair of Bufsers, network technologies should provide both low latency
and high transfer rates. Not all network technologies fulfil these requirements, being latency the
most stringent. ATM is appropriate for applying the Single Pair ofBufSers’ scheme, since it
offers both high bandwidth and low latency due to its connection oriented nature.

We can check equation (11) with the following data:
0 L&f= 1.7 ms (Seagate ST31200W);

Ri = 1.5 Mbits/s - all the streams request the same rate;
* R&= 3.88 MBytes/s, SCSI bus transfer rate 10 MBytes/s;

Rm = 60 Mbits/s - assuming ATM with real traffic conditions, and including on the
transfer rate the effect of UDP protocol processing;
Bus transfer rate (SBus, 25 MBytes/s sustained transfer rate) higher than R a a n d R,;
LQcc net < 1 ms, if we are using a dedicated virtual circuit.

We cansee that the equation is satisfied for all values of T. The margin is large enough to
allow longer network access latencies (up LO 25 ms), or to increase the disk transfer rate to values
similar to network transfer rates.

For homogeneous sets of requests we can state two simple sufficient conditions that guarantee
that equation (1 1) holds:

The savings of memory obtained by substituting per-stream buffering with per-storage-unit
buffering are proportional to the number of streams serviced in each storage device when all the
streams have the same consumption rate. For a typical disk our technique can reduce memory
usage in a factor of 20. As disk performance grows (higher transfer rates and lower latency
times), the number of streams that can be served is increased, and so the memory gain, that can
reach values of two orders of magnitude.

Our technique is not so well suited for heterogeneous streams, since the two buffers had to be
able maintain the playback for the fastest consumer. Conditions cannot be fulfilled under some
request sets, and if Single Pair of Buffers is feasible, the advantage obtained less relevant than
for the homogeneous rate case. Additional buffers can be added to the Single Pair of Buffers
scheme to establish a cushion and absorb network access latencies and variations of Ri.

4: Related Work

Double-buffering is dominant in existing practice. Some efforts have been made to reduce
memory consumption in per-stream buffering policies. One approach is to share buffers among
streams [6], but this solution is difficult to implement. Another is to combine double-buffering
with a modified disk access policy, Group Sweeping Scheduling (GSS, [4]). N sessions are
clustered into G groups. The groups are sequentially serviced, and within a group the retrieve is
performed in a SCAN basis. Buffers are reused from group to group. Its main drawback relies
on the fact that the disk head needs to perform one sweep per group, degrading global
performance. We want to note that GSS resembles our Single Pair ofBuffers’ proposal when G
equals N , although in our policy we do not have to consider the head movement increment,
because all the serviced streams are included in the C-SCAN scheduler. Our acceptance test
results in more streams admitted for the same disk parameters.

72

Per-stream buffering solutions are memory intensive. The amount of memory required
depends on the global cycle duration and cannot be reduced without affecting disk performance.
High disk transfer rates also contribute to the increment of memory consumption.

Per-device buffering has been adopted sparingly. In the Tigeir Filesystem [I] a similar
approach to the Single Pair ofBuffers policy is taken, but with broad margins of delivery, since
they do not attempt to obtain maximum performance. [2] study a new scheduling itechnique to
achieve Just-in-time stream serving by sending the data immediately after being read from disk.
They set stringent data layout restrictions, and a playback order based on slots. Thle conditions
for applying their technique are based exclusively on a disk model, without considering network
delivering. Their approach differs from ours: they develop a new :scheduling poliicy to avoid
client buffering by sending data when it is needed, while our aim is to develop a technique that
could be combined with existing scheduling policies without further restrictions than a set of
conditions based on hardware and software parameters.

5: Conclusion

We have presented a buffer management technique that reduces the amount of memory
needed in the server by assigning per-storage-unit buffers instead of per-stream buffers. It can
be effortlessly included in existing VOD systems due to its simple implementation. We have
derived the conditions, depending on disk and network parameters, under which il is feasible.
These conditions can be satisfied in state-of-the-art disk and networks.

To our knowledge, this is the first analysis of the implications of the disk/lius/network
interface interaction in the optimal buffering of VOD streams. Without a proper characterization
of these factors it is impossible to achieve both high resource utilization and minimum memory
usage.

The experimental server developed in our laboratory [5] is currently being modified to support
these policies.

For future work, it should be interesting to experiment with different combinations of network
technologies, storage systems, computer architectures and buffering policies; to analyze the
effect of multi-zone disks; to consider disk arrays since our technique is expected tjo scale well
with the number of storage elements employed; and finally, to test our policy with Variable Bit
Rate streams.

6: Bibliography

William J. Bolosky et al. The Tiger Video Fileserver. Proceedings ofthe 6th NOSSDAI! Zushi, Japan. April 1995.
Steven Berson, Richard R. Muntz. Just-in-time Scheduling for Video-on-Demand Storage Servers. Technical
Report, UCLA Computer Science Department. April 1995.
Edward Chang, Hector Garcia-Molina. Minimizing Memory Use in Video Servers. Stanford Technical Report
SIDL-WP-1996-0050. October 1996.
Mon-Song Chen, Dilip D. Kandlur, Philip S . Yu. Optimization of the Grouped Sweeping Scheduling (GSS) with
Heterogeneous Multimedia Streams. Proceedings of the ACM Multimedia Conference. Anaheim. August 1993.
Anastasio Molano, Albert0 Garcia-Martinez, Angel Viiia. The Design and Implementation of a Multimedia
Storage Server to support Video-On-Demand Applications. Proceedings IEEE Euromicro, Praga, pp 564 - 571.
September 1996.
Raymond T. Ng, Jinhai Yang. An analysis of buffer sharing and prefetching techniques for multimedia systems.
Multimedia Systems pp. 55 - 69. Springer Verlag. April 1996.
Chris Ruemmler, John Wilkes. An Introduction to Disk Drive Modeling. IEEE Computer Magazine, Vol. 27 (3),
pp 47 -57, March 1994.
Brian L.Tiemey, William E. Johnston, Hanan Herzog, Gary Hoo, Guojun Jin, 1a:ron Lee, Ling Tony Chen, Doron
Rotem. The Image Server System: A High-speed Parallel Distributed D,ata Server. Lawrence Berkeley
Laboratory Report no 36002.

73

