4,354 research outputs found

    Design of pixel-level ADCs for energy-sensitive hybrid pixel detectors

    Get PDF
    Single-photon counting hybrid pixel detectors have shown\ud to be a valid alternative to other types of X-ray imaging\ud devices due to their high sensitivity, low noise, linear behavior\ud and wide dynamic range. One important advantage of these\ud devices is the fact that detector and readout electronics are\ud manufactured separately. This allows the use of industrial\ud state-of-the-art CMOS processes to make the readout\ud electronics, combined with a free choice of detector material\ud (high resistivity Silicon, GaAs or other). By measuring not\ud only the number of X-ray photons but also their energies (or\ud wavelengths), the information content of the image increases,\ud given the same X-ray dose. We have studied several\ud possibilities of adding energy sensitivity to the single photon\ud counting capability of hybrid pixel detectors, by means of\ud pixel-level analog-to-digital converters. We show the results of\ud simulating different kinds of analog-to-digital converters in\ud terms of power, area and speed

    Simulation-based high-level synthesis of Nyquist-rate data converters using MATLAB/SIMULINK

    Get PDF
    This paper presents a toolbox for the simulation, optimization and high-level synthesis of Nyquist-rate Analog-to-Digital (A/D) and Digital-to-Analog (D/A) Converters in MATLAB®. The embedded simulator uses SIMULINK® C-coded S-functions to model all required subcircuits including their main error mechanisms. This approach allows to drastically speed up the simulation CPU-time up to 2 orders of magnitude as compared with previous approaches - based on the use of SIMULINK® elementary blocks. Moreover, S-functions are more suitable for implementing a more detailed description of the circuit. For all subcircuits, the accuracy of the behavioral models has been verified by electrical simulation using HSPICE. For synthesis purposes, the simulator is used for performance evaluation and combined with an hybrid optimizer for design parameter selection. The optimizer combines adaptive statistical optimization algorithm inspired in simulated annealing with a design-oriented formulation of the cost function. It has been integrated in the MATLAB/SIMULINK® platform by using the MATLAB® engine library, so that the optimization core runs in background while MATLAB® acts as a computation engine. The implementation on the MATLAB® platform brings numerous advantages in terms of signal processing, high flexibility for tool expansion and simulation with other electronic subsystems. Additionally, the presented toolbox comprises a friendly graphical user interface to allow the designer to browse through all steps of the simulation, synthesis and post-processing of results. In order to illustrate the capabilities of the toolbox, a 0.13)im CMOS 12bit@80MS/s analog front-end for broadband power line communications, made up of a pipeline ADC and a current steering DAC, is synthesized and high-level sized. Different experiments show the effectiveness of the proposed methodology.Ministerio de Ciencia y Tecnología TIC2003-02355RAICONI

    Performance of prototype BTeV silicon pixel detectors in a high energy pion beam

    Get PDF
    The silicon pixel vertex detector is a key element of the BTeV spectrometer. Sensors bump-bonded to prototype front-end devices were tested in a high energy pion beam at Fermilab. The spatial resolution and occupancies as a function of the pion incident angle were measured for various sensor-readout combinations. The data are compared with predictions from our Monte Carlo simulation and very good agreement is found.Comment: 24 pages, 20 figure

    Low Power Analog-to-Digital Conversion in Millimeter Wave Systems: Impact of Resolution and Bandwidth on Performance

    Full text link
    The wide bandwidth and large number of antennas used in millimeter wave systems put a heavy burden on the power consumption at the receiver. In this paper, using an additive quantization noise model, the effect of analog-digital conversion (ADC) resolution and bandwidth on the achievable rate is investigated for a multi-antenna system under a receiver power constraint. Two receiver architectures, analog and digital combining, are compared in terms of performance. Results demonstrate that: (i) For both analog and digital combining, there is a maximum bandwidth beyond which the achievable rate decreases; (ii) Depending on the operating regime of the system, analog combiner may have higher rate but digital combining uses less bandwidth when only ADC power consumption is considered, (iii) digital combining may have higher rate when power consumption of all the components in the receiver front-end are taken into account.Comment: 8 pages, 6 figures, in Proc. of IEEE Information Theory and Applications Workshop, Feb. 201

    5G Millimeter Wave Cellular System Capacity with Fully Digital Beamforming

    Full text link
    Due to heavy reliance of millimeter-wave (mmWave) wireless systems on directional links, Beamforming (BF) with high-dimensional arrays is essential for cellular systems in these frequencies. How to perform the array processing in a power efficient manner is a fundamental challenge. Analog and hybrid BF require fewer analog-to-digital converters (ADCs), but can only communicate in a small number of directions at a time,limiting directional search, spatial multiplexing and control signaling. Digital BF enables flexible spatial processing, but must be operated at a low quantization resolution to stay within reasonable power levels. This paper presents a simple additive white Gaussian noise (AWGN) model to assess the effect of low resolution quantization of cellular system capacity. Simulations with this model reveal that at moderate resolutions (3-4 bits per ADC), there is negligible loss in downlink cellular capacity from quantization. In essence, the low-resolution ADCs limit the high SNR, where cellular systems typically do not operate. The findings suggest that low-resolution fully digital BF architectures can be power efficient, offer greatly enhanced control plane functionality and comparable data plane performance to analog BF.Comment: To appear in the Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 201
    corecore