22,037 research outputs found

    Investigation and development of a flexible gripper with adaptable finger geometry

    Get PDF
    Das zuverlĂ€ssige und schonende Greifen ist ein Hauptanliegen bei der Entwicklung von neuartigen Greifvorrichtungen. Je grĂ¶ĂŸer die KontaktflĂ€che zwischen dem Greifer und dem Greifobjekt ist, desto schonender und zuverlĂ€ssiger ist der Greifvorgang. Um dieses Ziel zu erreichen wurden in den letzten Jahrzehnten zahlreiche Untersuchungen zu adaptiven passiven Greifern durchgefĂŒhrt. Ein neuer Forschungszweig im Bereich selbstadaptiver Greifer sind Greifer mit nachgiebigen blattfederartigen Greifelementen (Greiferfinger) Die Funktionsweise basiert auf dem elastischen Ausknicken der Greifelemente infolge einer translatorische Antriebsbewegung Die vorliegende Arbeit konzentriert sich auf die Verbesserung des Greifvorgangs, indem die KontaktlĂ€nge zwischen den blattfederartigen Greiferfingern und dem zu greifenden Objekt deutlich erhöht wird. Um diese Aufgabenstellung zu lösen, muss eine geeignete Greifergeometrie fĂŒr ein gegebenes Greifobjekt berechnet werden. Die gezielte Berechnung der erfoderlichen Greifergeometrie fĂŒr ein bekanntes Greifobjekt ist nicht möglich. Daher wurde als Lösungsansatz die umkehrte Richtung gewĂ€hlt. FĂŒr eine definierte Greifgeometrie wird die Gestalt des dazu passenden “idealen” Greifobjektes ermittelt und anschließend mit der Gestalt zu greifenden Objektes verglichen. Bei Gestaltabweichungen wird die Greifergeometrie iterative verĂ€ndert, bis seine geeignete Greifergeometrie gefunden wurde. Im Rahmen der vorliegenden Arbeit wird zunĂ€chst die Ermittlung des “idealen” Greifobjektes behandelt. Es wurde ein Algorithmus entwickelt, der fĂŒr eine vorgegebene Greifergeometrie die Gestalt eines runden bzw. elliptischen Objektes ermittelt. Der Algorithmus verwendet als Eingabedaten die Biegelinien der elastisch ausgeknickten Greiffinger unter BerĂŒcksichtigung unterschiedlicher Randbedingungen. Als Ausgabedaten liefert der Algorithmus die Gestalt des passenden Greifobjektes zurĂŒck. FĂŒr quadratische bzw. rechteckige sowie fĂŒr dreieckige Objekte wurden unterschiedliche Greifgeometrien untersucht. Außerdem wird fĂŒr quadratische und rechteckige Objekte das Lösungskonzept fĂŒr die Entwicklung eines weiteren Algorithmus beschrieben. In Kapitel 1 wird eine Klassifizierung von Greifern basierend auf der AnpassungsfĂ€higkeit vorgestellt. In Kapitel 2 werden Lösungskonzepte, Modelle und Theorien vorgestellt. In Kapitel 3 werden Ablaufdiagramme der Algorithmen dargestellt. In Kapitel 4 wird die Entwicklung des Algorithmus fĂŒr elliptische Objekte und deren Betriebsmodi beschrieben. In Kapitel 5 werden Greifgeometrien fĂŒr quadratische bzw. Rechteckige sowie fĂŒr dreieckige Objekte analysiert und die Ideen eines Algorithmus fĂŒr quadratisch bzw. rechteckige Objekte beschrieben. In Kapitel 6 wird ein kurzer Überblick ĂŒber die zukĂŒnftige Arbeiten.Reliable and gentle gripping is a major concern in the development of new gripping devices. The larger contact surface between the gripper and the gripping object, the gentler and more reliable the gripping process. In order to achieve this goal, further investigations on adaptive passive grippers have been carried out in the recent decades. A new branch of research in the field of self-adaptive grippers are compliant leaf-spring-like gripping elements (gripper fingers). Its mode of operation is based on the elastic buckling of the gripping elements as a result of a translatory drive movement. The present work focuses on improving the gripping process by increasing significantly the contact length between the compliant leaf-spring-like gripper fingers and the object to be gripped. In order to solve this task, a suitable gripper geometry for a given gripping object should be calculated The specific calculation of the required gripper geometry for a known gripping object is not possible; therefore, this work aims in the opposite direction. For a defined gripping geometry, the shape of the matching “ideal” gripping object is determined and then compared with the desired object to be gripped. In case of a deviation in the size, the gripper geometry is iteratively changed until its suitable gripper geometry has been found. In the present work, the determination of the “ideal” gripping object is the first task to deal with. An algorithm has been developed to determine the shape of a round-elliptical object for a given gripper geometry. The algorithm uses as data input the bend lines of the compliant twogripper finger under different boundary conditions. As data output, the algorithm returns the shape of the matching gripping object. For square-rectangular and triangular objects, different gripping geometries have been investigated. Furthermore, for square-rectangular objects, solution concepts for the development of an algorithm is described. In chapter 1, a classification based on adaptability is presented. In chapter 2, solution concepts, models and theories involved are introduced. In chapter 3, process flow diagrams of the algorithms are presented. In chapter 4, the development of the algorithm for elliptical objects and its operation modes are described. In chapter 5, gripping geometries for square-rectangular and triangular objects are analysed and the ideas of an algorithm for square-rectangular objects are described. In chapter 6, a brief overview of the futur work is commented.Tesi

    SCALER: Versatile Multi-Limbed Robot for Free-Climbing in Extreme Terrains

    Full text link
    This paper presents SCALER, a versatile free-climbing multi-limbed robot that is designed to achieve tightly coupled simultaneous locomotion and dexterous grasping. Although existing quadruped-limbed robots have shown impressive dexterous skills such as object manipulation, it is essential to balance power-intensive locomotion and dexterous grasping capabilities. We design a torso linkage and a parallel-serial limb to meet such conflicting skills that pose unique challenges in the hardware designs. SCALER employs underactuated two-fingered GOAT grippers that can mechanically adapt and offer 7 modes of grasping, enabling SCALER to traverse extreme terrains with multi-modal grasping strategies. We study the whole-body approach, where SCALER uses its body and limbs to generate additional forces for stable grasping with environments, further enhancing versatility. Furthermore, we improve the GOAT gripper actuation speed to realize more dynamic climbing in a closed-loop control fashion. With these proposed technologies, SCALER can traverse vertical, overhang, upside-down, slippery terrains, and bouldering walls with non-convex-shaped climbing holds under the Earth's gravity

    Inertial Load Compensation by a Model Spinal Circuit During Single Joint Movement

    Full text link
    Office of Naval Research (N00014-92-J-1309); CONACYT (Mexico) (63462

    Systematic object-invariant in-hand manipulation via reconfigurable underactuatuation: introducing the RUTH gripper

    Get PDF
    We introduce a reconfigurable underactuated robot hand able to perform systematic prehensile in-hand manipulations regardless of object size or shape. The hand utilises a two-degree-of-freedom five-bar linkage as the palm of the gripper, with three three-phalanx underactuated fingers—jointly controlled by a single actuator—connected to the mobile revolute joints of the palm. Three actuators are used in the robot hand system in total, one for controlling the force exerted on objects by the fingers through an underactuated tendon system, and two for changing the configuration of the palm and thus the positioning of the fingers. This novel layout allows decoupling grasping and manipulation, facilitating the planning and execution of in-hand manipulation operations. The reconfigurable palm provides the hand with a large grasping versatility, and allows easy computation of a map between task space and joint space for manipulation based on distance-based linkage kinematics. The motion of objects of different sizes and shapes from one pose to another is then straightforward and systematic, provided the objects are kept grasped.This is guaranteed independently and passively by the underactuated fingers using a custom tendon routing method, which allows no tendon length variation when the relative finger base positions change with palm reconfigurations. We analyse the theoretical grasping workspace and grasping and manipulation capability of the hand, present algorithms forcomputing the manipulation map and in-hand manipulation planning, and evaluate all these experimentally. Numericaland empirical results of several manipulation trajectories with objects of different size and shape clearly demonstrate the viability of the proposed concept

    Magnetorheological Variable Stiffness Robot Legs for Improved Locomotion Performance

    Get PDF
    In an increasingly automated world, interest in the field of robotics is surging, with an exciting branch of this area being legged robotics. These biologically inspired robots have leg-like limbs which enable locomotion, suited to challenging terrains which wheels struggle to conquer. While it has been quite some time since the idea of a legged machine was first made a reality, this technology has been modernised with compliant legs to improve locomotion performance. Recently, developments in biological science have uncovered that humans and animals alike control their leg stiffness, adapting to different locomotion conditions. Furthermore, as these studies highlighted potential to improve upon the existing compliant-legged robots, modern robot designs have seen implementation of variable stiffness into their legs. As this is quite a new concept, few works have been published which document such designs, and hence much potential exists for research in this area. As a promising technology which can achieve variable stiffness, magnetorheological (MR) smart materials may be ideal for use in robot legs. In particular, recent advances have enabled the use of MR fluid (MRF) to facilitate variable stiffness in a robust manner, in contrast to MR elastomer (MRE). Developed in this thesis is what was at the time the first rotary MR damper variable stiffness mechanism. This is proposed by the author for use within a robot leg to enable rapid stiffness control during locomotion. Based its mechanics and actuation, the leg is termed the magnetorheological variable stiffness actuator leg mark-I (MRVSAL-I). The leg, with a C-shaped morphology suited to torque actuation is first characterised through linear compression testing, demonstrating a wide range of stiffness variation. This variation is in response to an increase in electric current supplied to the internal electromagnetic coils of the MR damper. A limited degrees-of-freedom (DOF) bipedal locomotion platform is designed and manufactured to study the locomotion performance resulting from the variable stiffness leg. It is established that optimal stiffness tuning of the leg could achieve reduced mechanical cost of transport (MCOT), thereby improving locomotion performance. Despite the advancements to locomotion demonstrated, some design issues with the leg required further optimisation and a new leg morphology

    Bioinspired design of a landing system with soft shock absorbers for autonomous aerial robots

    Get PDF
    One of the main challenges for autonomous aerial robots is to land safely on a target position on varied surface structures in real‐world applications. Most of current aerial robots (especially multirotors) use only rigid landing gears, which limit the adaptability to environments and can cause damage to the sensitive cameras and other electronics onboard. This paper presents a bioinpsired landing system for autonomous aerial robots, built on the inspire–abstract–implement design paradigm and an additive manufacturing process for soft thermoplastic materials. This novel landing system consists of 3D printable Sarrus shock absorbers and soft landing pads which are integrated with an one‐degree‐of‐freedom actuation mechanism. Both designs of the Sarrus shock absorber and the soft landing pad are analyzed via finite element analysis, and are characterized with dynamic mechanical measurements. The landing system with 3D printed soft components is characterized by completing landing tests on flat, convex, and concave steel structures and grassy field in a total of 60 times at different speeds between 1 and 2 m/s. The adaptability and shock absorption capacity of the proposed landing system is then evaluated and benchmarked against rigid legs. It reveals that the system is able to adapt to varied surface structures and reduce impact force by 540N at maximum. The bioinspired landing strategy presented in this paper opens a promising avenue in Aerial Biorobotics, where a cross‐disciplinary approach in vehicle control and navigation is combined with soft technologies, enabled with adaptive morphology

    Bioinspired design of a landing system with soft shock absorbers for autonomous aerial robots

    Get PDF
    © 2018 Wiley Periodicals Inc. One of the main challenges for autonomous aerial robots is to land safely on a target position on varied surface structures in real-world applications. Most of current aerial robots (especially multirotors) use only rigid landing gears, which limit the adaptability to environments and can cause damage to the sensitive cameras and other electronics onboard. This paper presents a bioinpsired landing system for autonomous aerial robots, built on the inspire–abstract–implement design paradigm and an additive manufacturing process for soft thermoplastic materials. This novel landing system consists of 3D printable Sarrus shock absorbers and soft landing pads which are integrated with an one-degree-of-freedom actuation mechanism. Both designs of the Sarrus shock absorber and the soft landing pad are analyzed via finite element analysis, and are characterized with dynamic mechanical measurements. The landing system with 3D printed soft components is characterized by completing landing tests on flat, convex, and concave steel structures and grassy field in a total of 60 times at different speeds between 1 and 2 m/s. The adaptability and shock absorption capacity of the proposed landing system is then evaluated and benchmarked against rigid legs. It reveals that the system is able to adapt to varied surface structures and reduce impact force by 540N at maximum. The bioinspired landing strategy presented in this paper opens a promising avenue in Aerial Biorobotics, where a cross-disciplinary approach in vehicle control and navigation is combined with soft technologies, enabled with adaptive morphology
    • 

    corecore