64 research outputs found

    Smart city pilot projects using LoRa and IEEE802.15.4 technologies

    Get PDF
    Information and Communication Technologies (ICTs), through wireless communications and the Internet of Things (IoT) paradigm, are the enabling keys for transforming traditional cities into smart cities, since they provide the core infrastructure behind public utilities and services. However, to be effective, IoT-based services could require different technologies and network topologies, even when addressing the same urban scenario. In this paper, we highlight this aspect and present two smart city testbeds developed in Italy. The first one concerns a smart infrastructure for public lighting and relies on a heterogeneous network using the IEEE 802.15.4 short-range communication technology, whereas the second one addresses smart-building applications and is based on the LoRa low-rate, long-range communication technology. The smart lighting scenario is discussed providing the technical details and the economic benefits of a large-scale (around 3000 light poles) flexible and modular implementation of a public lighting infrastructure, while the smart-building testbed is investigated, through measurement campaigns and simulations, assessing the coverage and the performance of the LoRa technology in a real urban scenario. Results show that a proper parameter setting is needed to cover large urban areas while maintaining the airtime sufficiently low to keep packet losses at satisfactory levels

    Iluminação inteligente para espaços interiores

    Get PDF
    Mestrado em Engenharia Eletrónica e TelecomunicaçõesEsta dissertação propõe um sistema de iluminação para espaços interiores com o objetivo de ultrapassar as limitações dos sistemas atuais e melhorar a eficiência energética. Este trabalho enquadra-se no projeto Smartlighting que tem o objetivo de desenvolver um sistema de gestão integrada para o edifício do IT2. Na sua fase inicial, o sistema foca-se principalmente no controlo da iluminação através do uso de sensores e tecnologias da Internet das Coisas. Numa primeira fase, é feita uma análise do problema e das tecnologias envolvidas. Depois os requisitos para o sistema são identificados através da exploração de vários cenários de utilização. Daqui é desenvolvida uma solução conceptual que resulta do trabalho colaborativo do projeto Smartlighting. A solução apresentada é baseada Bluetooth Low Energy e gerida através de técnicas deem Pcroocmeusnsiacmaçeãnot o pdoer Eventos Complexos, constituindo assim uma topologia distinta das usadas atualmente em sistemas iluminação para espaços interiores. A solução é depois analisada numa perspetiva de iluminação através de uma simulação de DIALux que visa validar a implementação no âmbito da norma europeia 12464, referente a sistemas de iluminação para espaços interiores. Desta simulação também resulta uma projeção da eficiência enérgica do edifício em termos de iluminação, considerando as funcionalidades que o sistema idealizado implementará. A solução é concretizada num protótipo que é avaliado de forma a validar a solução numa perspetiva de automação.building energy consumption problematic and the constrains present in current indoor lighting systems. The work presented results from the Smartlighting project that aims to develop an integrated building management system for the IT2 building. In its initial stage, this system focuses primarily in indoor lighting control, using sensors and IoT technologies. First, the problem and the technologies involved are presented and reviewed. Then the project requirements are identified by exploring a set of use case scenarios. From this, a concept solution is presented that results from the Smartlighting project collaborative work. The proposed solution takes advantage of Bluetooth Low Energy and Complex Event Processing technologies to deliver a topology distinct from the indoor lighting system status quo. The solution is then analysed in terms of a lighting application, via a DIALux simulation that aims to validate the implementation in the European Norm 12464 scope, referring to indoor lighting systems. From this simulation, it was also conducted an energy efficiency study referring to the building lighting, that took in consideration the functionalities implemented by the system. The solution is then materialized into a prototype to be evaluated in an automation perspective

    Internet of light: Technologies and applications

    Get PDF
    Intelligent lighting has attracted lots of research interests to investigate all the possible schemes to support this need as human has spent more and more time indoor. Semiconductor-based illumination network is an ideal bearer to carry on this mission. In this paper, we propose the concept of Internet of Light (IoL) and define its key functionalities by introducing the information and communication technologies to the illumination networks. Our latest research progress on high-speed transmission, resource optimization, and light stroboscopic irradiation experiment based on IoL platform show that IoL can not only provide value-added services such as positioning and information transmission but also act like a sensor network as part of Internet of Things infrastructure. It confirms that with sensors for different purposes integrated into the lamp, IoL helps people be aware of the environmental changes and make the adjustment accordingly, can provide cost-effective information service for Internet of Things applications, and supports the non-intrusive optical therapy in the future

    Code Division-Based Sensing of Illumination Contributions in Solid-State Lighting Systems

    Full text link

    A Survey of Positioning Systems Using Visible LED Lights

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.As Global Positioning System (GPS) cannot provide satisfying performance in indoor environments, indoor positioning technology, which utilizes indoor wireless signals instead of GPS signals, has grown rapidly in recent years. Meanwhile, visible light communication (VLC) using light devices such as light emitting diodes (LEDs) has been deemed to be a promising candidate in the heterogeneous wireless networks that may collaborate with radio frequencies (RF) wireless networks. In particular, light-fidelity has a great potential for deployment in future indoor environments because of its high throughput and security advantages. This paper provides a comprehensive study of a novel positioning technology based on visible white LED lights, which has attracted much attention from both academia and industry. The essential characteristics and principles of this system are deeply discussed, and relevant positioning algorithms and designs are classified and elaborated. This paper undertakes a thorough investigation into current LED-based indoor positioning systems and compares their performance through many aspects, such as test environment, accuracy, and cost. It presents indoor hybrid positioning systems among VLC and other systems (e.g., inertial sensors and RF systems). We also review and classify outdoor VLC positioning applications for the first time. Finally, this paper surveys major advances as well as open issues, challenges, and future research directions in VLC positioning systems.Peer reviewe

    A two phase framework for visible light-based positioning in an indoor environment: performance, latency, and illumination

    Full text link
    Recently with the advancement of solid state lighting and the application thereof to Visible Light Communications (VLC), the concept of Visible Light Positioning (VLP) has been targeted as a very attractive indoor positioning system (IPS) due to its ubiquity, directionality, spatial reuse, and relatively high modulation bandwidth. IPSs, in general, have 4 major components (1) a modulation, (2) a multiple access scheme, (3) a channel measurement, and (4) a positioning algorithm. A number of VLP approaches have been proposed in the literature and primarily focus on a fixed combination of these elements and moreover evaluate the quality of the contribution often by accuracy or precision alone. In this dissertation, we provide a novel two-phase indoor positioning algorithmic framework that is able to increase robustness when subject to insufficient anchor luminaries and also incorporate any combination of the four major IPS components. The first phase provides robust and timely albeit less accurate positioning proximity estimates without requiring more than a single luminary anchor using time division access to On Off Keying (OOK) modulated signals while the second phase provides a more accurate, conventional, positioning estimate approach using a novel geometric constrained triangulation algorithm based on angle of arrival (AoA) measurements. However, this approach is still an application of a specific combination of IPS components. To achieve a broader impact, the framework is employed on a collection of IPS component combinations ranging from (1) pulsed modulations to multicarrier modulations, (2) time, frequency, and code division multiple access, (3) received signal strength (RSS), time of flight (ToF), and AoA, as well as (4) trilateration and triangulation positioning algorithms. Results illustrate full room positioning coverage ranging with median accuracies ranging from 3.09 cm to 12.07 cm at 50% duty cycle illumination levels. The framework further allows for duty cycle variation to include dimming modulations and results range from 3.62 cm to 13.15 cm at 20% duty cycle while 2.06 cm to 8.44 cm at a 78% duty cycle. Testbed results reinforce this frameworks applicability. Lastly, a novel latency constrained optimization algorithm can be overlaid on the two phase framework to decide when to simply use the coarse estimate or when to expend more computational resources on a potentially more accurate fine estimate. The creation of the two phase framework enables robust, illumination, latency sensitive positioning with the ability to be applied within a vast array of system deployment constraints

    Visible Light Communication (VLC)

    Get PDF
    Visible light communication (VLC) using light-emitting diodes (LEDs) or laser diodes (LDs) has been envisioned as one of the key enabling technologies for 6G and Internet of Things (IoT) systems, owing to its appealing advantages, including abundant and unregulated spectrum resources, no electromagnetic interference (EMI) radiation and high security. However, despite its many advantages, VLC faces several technical challenges, such as the limited bandwidth and severe nonlinearity of opto-electronic devices, link blockage and user mobility. Therefore, significant efforts are needed from the global VLC community to develop VLC technology further. This Special Issue, “Visible Light Communication (VLC)”, provides an opportunity for global researchers to share their new ideas and cutting-edge techniques to address the above-mentioned challenges. The 16 papers published in this Special Issue represent the fascinating progress of VLC in various contexts, including general indoor and underwater scenarios, and the emerging application of machine learning/artificial intelligence (ML/AI) techniques in VLC
    corecore