9 research outputs found

    Weyl-Heisenberg Spaces for Robust Orthogonal Frequency Division Multiplexing

    Full text link
    Design of Weyl-Heisenberg sets of waveforms for robust orthogonal frequency division multiplex- ing (OFDM) has been the subject of a considerable volume of work. In this paper, a complete parameterization of orthogonal Weyl-Heisenberg sets and their corresponding biorthogonal sets is given. Several examples of Weyl-Heisenberg sets designed using this parameterization are pre- sented, which in simulations show a high potential for enabling OFDM robust to frequency offset, timing mismatch, and narrow-band interference

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Analysis of PAPR Reduction in 5G communication

    Get PDF
    The goal of this thesis is to analyze PAPR reduction performance in 5G communication. 5G communication technology is beyond 4G and LTE technology and expected to be employed around 2020. Research is going on for standardization of 5G technology. One of the key objective of 5G technology is to achieve high data rate (10Gbps). For this a large bandwidth is needed. Since limited frequency resources are available, the frequency spectrum should be efficiently utilized to obtain high data rate. Also to utilize white space, cognitive radio networks are needed. In cognitive radio network very low out of band radiation is desired. OFDM is used in 4G communication but it has the drawback of low spectral efficiency and high out of band radiation, which makes it a poor choice for 5G communication. So for 5G communication new waveform is required. FBMC, UFMC, GFDM are some of the waveform candidates for 5G communication. FBMC is a potential candidate for 5G communication and it is used in many 5G projects around the world. In this thesis FBMC is used as a waveform candidate for 5G communication. High PAPR is always a problem in multicarrier communication system. FBMC is also a multicarrier communication system, so it also suffers from high PAPR problem. To reduce the PAPR several PAPR reduction techniques have been proposed over the last few decades. Tone injection and companding are two promising techniques, which are used in PAPR reduction of multicarrier communication system. In this thesis a combined scheme of tone injection and companding is used, which gives significant performance improvement compared to the tone injection and companding techniques taken separately. Simulation is performed to analyses the PAPR and BER performance of FBMC-FMT and FBMC-SMT system. Also a new clipping based PAPR reduction scheme is proposed in this thesis. For this scheme simulation is performed to analyze the PAPR performance of FBMC-FMT, FBMC-SMT and FBMC-CMT system. All the simulations are performed in MATLAB

    Etude et évaluation d un multiplexage fréquentiel basé sur l OFDM/OQAM

    Get PDF
    Cette thèse est consacrée à l étude de la modulation OFDM/OQAM en tant qu alternative à la modulation OFDM. Nous traitons plus particulièrement le contexte multiusagers. De ce point de vue, les aspects de synchronisation sont déterminants. Les différentes options plus le choix de la forme d onde sont donc examinés de ce point de vue. Un autre objectif est de montrer de manière précise comment la modulation OFDM/OQAM peut s adapter à une transmission de type cellulaire, en prenant comme référence le système 3GPP/LTE. Les principales contributions que nous avons apportées sont : 1) Une analyse des phénomènes de désynchronisation : nous analysons l effet de la désynchronisation, suivant les axes temporel et fréquentiel, sur les performances de l OFDM/OQAM au récepteur. 2) Méthode de synchronisation : nous analysons une méthode de synchronisation temporelle définie dans un contexte de transmission OFDM/OQAM mono-usager et nous l adaptons à un scénario de type multi-usagers. 3) Proposition d un schéma d accès multiple : nous proposons un schéma d accès multiple basé sur la modulation OFDM/OQAM, alternatif aux techniques connues OFDMA et SC-FDMA, pour la transmission en liaison montante dans un contexte de type 3GPP/LTE.This thesis is dedicated to the study of the OFDM/OQAM modulation as an alternative to the OFDM modulation. We treat more especially the multi-user environment. In this respect, synchronization aspects are crucial. The different options plus the choice of the waveform are examined in this point of view. Another objective is to precisely show how the OFDM/OQAM can be adapted to a cellular transmission type, taking as reference the 3GPP/LTE system. The main contributions we have made are : 1) Analysis of the desynchronization phenomena : we analyze the effect of desynchronization, according to the time and frequency axes, on the performance of OFDM/OQAM at the receiver side. 2) Synchronization method : we analyze a method of temporal synchronization defined in a single user OFDM/OQAM transmission and we adapt it to a multi-user scenario type. 3) Proposing for a multiple access scheme : we propose a multiple access scheme based on theOFDM/OQAM modulation, alternative to the known techniques OFDMA and SC-FDMA, for the UL transmission in a 3GPP/LTE context.PARIS-CNAM (751032301) / SudocSudocFranceF

    Filtered Multicarrier Transmission

    Get PDF
    Orthogonal frequency‐division multiplexing (OFDM) has been adopted as the waveform of choice in the existing and emerging broadband wireless communication systems for a number of advantages it can offer. Nevertheless, investigations of more advanced multicarrier transmission schemes have continued with the aim of eliminating or mitigating its essential limitations. This article discusses multicarrier schemes with enhanced spectrum localization, which manage to reduce the spectral sidelobes of plain OFDM that are problematic in various advanced communication scenarios. These include schemes for enhancing the OFDM waveform characteristics through additional signal processing as well as filter‐bank multicarrier (FBMC) waveforms utilizing frequency‐selective filter banks instead of plain (inverse) discrete Fourier transform processing for waveform generation and demodulation.acceptedVersionPeer reviewe

    Modulations multiporteuses WCP-OFDM : évaluation des performances en environnement radiomobile

    Get PDF
    Many digital communication applications are facing time and frequency selective channels that can be modelled by linear time-variant systems. Through this thesis work, we show that oversampled multicarrier modulations provide a suitable transmission technique for such an environment. However, the complexity of the transmitter-receiver remains a major obstacle for their adoption. Based on this observation, we focus on the sub-family of oversampled multicarrier modulation with short filters (WCP-OFDM), whose complexity is similar to cylic prefix OFDM. After introducing the perfect reconstruction conditions, we develop low-complexity equalizers and we study the peak-to-average power ratio issue at the output of the transmitter. Finally, we evaluate the performances of these modulations over several mobile radio propagation scenarios. Simulation results confirm the benefits of WCP-OFDM, with time-frequency localized prototypes filters, over doubly selective channels.De nombreuses applications de communications numériques font face à des canaux de transmission sélectifs en temps et en fréquence que nous pouvons assimiler à des systèmes linéaires variants dans le temps. À travers ces travaux de thèse, nous montrons que les modulations multiporteuses suréchantillonnées constituent une technique de transmission adaptée à ce type d'environnement. Cependant, la complexité algorithmique des émetteurs-récepteurs présente un frein majeur à leur adoption. Fort de ce constat, nous nous intéressons à la sous-famille des modulations multiporteuses suréchantillonnées à filtres courts (WCP-OFDM), dont la complexité algorithmique est comparable à celle de l'OFDM avec préfixe cyclique. Après avoir exprimé les conditions de reconstruction parfaite, nous développons des égaliseurs de faible complexité et étudions la problématique du rapport de puissance crête sur puissance moyenne du signal en sortie d'émetteur. Enfin, nous analysons les performances de ces modulations à travers plusieurs scénarios de propagation radiomobile. Les résultats de simulation confirment l'intérêt du WCP-OFDM, associé à des filtres prototypes bien localisés en temps et en fréquence pour faire face aux canaux doublement sélectifs

    Multiple-Input Multiple-Output Detection Algorithms for Generalized Frequency Division Multiplexing

    Get PDF
    Since its invention, cellular communication has dramatically transformed personal lifes and the evolution of mobile networks is still ongoing. Evergrowing demand for higher data rates has driven development of 3G and 4G systems, but foreseen 5G requirements also address diverse characteristics such as low latency or massive connectivity. It is speculated that the 4G plain cyclic prefix (CP)-orthogonal frequency division multiplexing (OFDM) cannot sufficiently fulfill all requirements and hence alternative waveforms have been in-vestigated, where generalized frequency division multiplexing (GFDM) is one popular option. An important aspect for any modern wireless communication system is the application of multi-antenna, i.e. MIMO techiques, as MIMO can deliver gains in terms of capacity, reliability and connectivity. Due to its channel-independent orthogonality, CP-OFDM straightforwardly supports broadband MIMO techniques, as the resulting inter-antenna interference (IAI) can readily be resolved. In this regard, CP-OFDM is unique among multicarrier waveforms. Other waveforms suffer from additional inter-carrier interference (ICI), inter-symbol interference (ISI) or both. This possibly 3-dimensional interference renders an optimal MIMO detection much more complex. In this thesis, weinvestigate how GFDM can support an efficient multiple-input multiple-output (MIMO) operation given its 3-dimensional interference structure. To this end, we first connect the mathematical theory of time-frequency analysis (TFA) with multicarrier waveforms in general, leading to theoretical insights into GFDM. Second, we show that the detection problem can be seen as a detection problem on a large, banded linear model under Gaussian noise. Basing on this observation, we propose methods for applying both space-time code (STC) and spatial multiplexing techniques to GFDM. Subsequently, we propose methods to decode the transmitted signals and numerically and theoretically analyze their performance in terms of complexiy and achieved frame error rate (FER). After showing that GFDM modulation and linear demodulation is a direct application of Gabor expansion and transform, we apply results from TFA to explain singularities of the modulation matrix and derive low-complexity expressions for receiver filters. We derive two linear detection algorithms for STC encoded GFDM signals and we show that their performance is equal to OFDM. In the case of spatial multiplexing, we derive both non-iterative and iterative detection algorithms which base on successive interference cancellation (SIC) and minimum mean squared error (MMSE)-parallel interference cancellation (PIC) detection, respectively. By analyzing the error propagation of the SIC algorithm, we explain its significantly inferior performance compared to OFDM. Using feedback information from the channel decoder, we can eventually show that near-optimal GFDM detection can outperform an optimal OFDM detector by up to 3dB for high SNR regions. We conclude that GFDM, given the obtained results, is not a general-purpose replacement for CP-OFDM, due to higher complexity and varying performance. Instead, we can propose GFDM for scenarios with strong frequency-selectivity and stringent spectral and FER requirements
    corecore