61,203 research outputs found

    Multi-objective evolutionary–fuzzy augmented flight control for an F16 aircraft

    Get PDF
    In this article, the multi-objective design of a fuzzy logic augmented flight controller for a high performance fighter jet (the Lockheed-Martin F16) is described. A fuzzy logic controller is designed and its membership functions tuned by genetic algorithms in order to design a roll, pitch, and yaw flight controller with enhanced manoeuverability which still retains safety critical operation when combined with a standard inner-loop stabilizing controller. The controller is assessed in terms of pilot effort and thus reduction of pilot fatigue. The controller is incorporated into a six degree of freedom motion base real-time flight simulator, and flight tested by a qualified pilot instructor

    The fidelity of dynamic signaling by noisy biomolecular networks

    Get PDF
    This is the final version of the article. Available from Public Library of Science via the DOI in this record.Cells live in changing, dynamic environments. To understand cellular decision-making, we must therefore understand how fluctuating inputs are processed by noisy biomolecular networks. Here we present a general methodology for analyzing the fidelity with which different statistics of a fluctuating input are represented, or encoded, in the output of a signaling system over time. We identify two orthogonal sources of error that corrupt perfect representation of the signal: dynamical error, which occurs when the network responds on average to other features of the input trajectory as well as to the signal of interest, and mechanistic error, which occurs because biochemical reactions comprising the signaling mechanism are stochastic. Trade-offs between these two errors can determine the system's fidelity. By developing mathematical approaches to derive dynamics conditional on input trajectories we can show, for example, that increased biochemical noise (mechanistic error) can improve fidelity and that both negative and positive feedback degrade fidelity, for standard models of genetic autoregulation. For a group of cells, the fidelity of the collective output exceeds that of an individual cell and negative feedback then typically becomes beneficial. We can also predict the dynamic signal for which a given system has highest fidelity and, conversely, how to modify the network design to maximize fidelity for a given dynamic signal. Our approach is general, has applications to both systems and synthetic biology, and will help underpin studies of cellular behavior in natural, dynamic environments.We acknowledge support from a Medical Research Council and Engineering and Physical Sciences Council funded Fellowship in Biomedical Informatics (CGB) and a Scottish Universities Life Sciences Alliance chair in Systems Biology (PSS). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Sparse Wide-Area Control of Power Systems using Data-driven Reinforcement Learning

    Full text link
    In this paper we present an online wide-area oscillation damping control (WAC) design for uncertain models of power systems using ideas from reinforcement learning. We assume that the exact small-signal model of the power system at the onset of a contingency is not known to the operator and use the nominal model and online measurements of the generator states and control inputs to rapidly converge to a state-feedback controller that minimizes a given quadratic energy cost. However, unlike conventional linear quadratic regulators (LQR), we intend our controller to be sparse, so its implementation reduces the communication costs. We, therefore, employ the gradient support pursuit (GraSP) optimization algorithm to impose sparsity constraints on the control gain matrix during learning. The sparse controller is thereafter implemented using distributed communication. Using the IEEE 39-bus power system model with 1149 unknown parameters, it is demonstrated that the proposed learning method provides reliable LQR performance while the controller matched to the nominal model becomes unstable for severely uncertain systems.Comment: Submitted to IEEE ACC 2019. 8 pages, 4 figure

    Vehicle platoons through ring coupling

    Get PDF
    In this paper, a novel strategy for the control of a string of vehicles is designed. The vehicles are coupled in a unidirectional ring at the interaction level: each vehicle is influenced by the position of its immediate forward neighbor; the first vehicle in the platoon is influenced by the position of the last vehicle. Through these interactions a cooperative behavior emerges and a platoon of vehicles moving at a constant velocity with constant inter-vehicle spacings is formed. This contrasts with more traditional control schemes where an independent leader vehicle is followed by the remaining vehicles. For this control structure, stability properties are established. The concept of string stability of a platoon is discussed and applied to the ring interconnection. Design rules are presented, showing how an appropriate choice of parameter values leads to a constant spacing or constant time headway policy. Furthermore, the scheme has a characteristic property: it maintains the platoon structure when subject to malfunctioning vehicles
    corecore