21,667 research outputs found

    Design by Contract Using Meta-Assertions

    Get PDF
    The important role that class contracts - pre and post-conditions of methods, and invariants - play in the specification, monitoring and reuse of classes is becoming increasingly accepted by the OO community. The several languages of assertions and monitoring code generation tools that exist allow the specification and, eventually, the runtime checking of very powerful and elegant contracts. This is definitely so for classes as simple as Stack, Point or Account. However, when the aim is the writing of pre and post-conditions for methods in classes that are clients of those simple classes, the task reveals itself harder and brings undesirable effects, like the increasing in class coupling and encapsulation decreasing. In addition, the conviction that assertions should have no side effects in order to be possible to monitor them, weakens the expressive power of assertion languages and makes it more difficult to avoid the above mentioned undesirable effects. In this paper we propose a pattern to the design of class contracts that is an adaptation of existing patterns of design into a declarative context - the world of assertions. The use of this pattern produces contracts that preserve low class coupling and data encapsulation. The expressive power of existing assertion languages is insufficient, however, to write these contracts. In order to fill this lack, we propose meta-assertions and formally define their syntax and semantics. In order to be possible to check contracts at runtime, we define rules for the expansion of meta-assertions that can be monitored by existing tools, and we show grammatical and semantic soundness of the expansio

    Metamodel-based model conformance and multiview consistency checking

    Get PDF
    Model-driven development, using languages such as UML and BON, often makes use of multiple diagrams (e.g., class and sequence diagrams) when modeling systems. These diagrams, presenting different views of a system of interest, may be inconsistent. A metamodel provides a unifying framework in which to ensure and check consistency, while at the same time providing the means to distinguish between valid and invalid models, that is, conformance. Two formal specifications of the metamodel for an object-oriented modeling language are presented, and it is shown how to use these specifications for model conformance and multiview consistency checking. Comparisons are made in terms of completeness and the level of automation each provide for checking multiview consistency and model conformance. The lessons learned from applying formal techniques to the problems of metamodeling, model conformance, and multiview consistency checking are summarized

    Specifying Reusable Components

    Full text link
    Reusable software components need expressive specifications. This paper outlines a rigorous foundation to model-based contracts, a method to equip classes with strong contracts that support accurate design, implementation, and formal verification of reusable components. Model-based contracts conservatively extend the classic Design by Contract with a notion of model, which underpins the precise definitions of such concepts as abstract equivalence and specification completeness. Experiments applying model-based contracts to libraries of data structures suggest that the method enables accurate specification of practical software

    An Architecture for Provenance Systems

    No full text
    This document covers the logical and process architectures of provenance systems. The logical architecture identifies key roles and their interactions, whereas the process architecture discusses distribution and security. A fundamental aspect of our presentation is its technology-independent nature, which makes it reusable: the principles that are exposed in this document may be applied to different technologies

    TreatJS: Higher-Order Contracts for JavaScript

    Get PDF
    TreatJS is a language embedded, higher-order contract system for JavaScript which enforces contracts by run-time monitoring. Beyond providing the standard abstractions for building higher-order contracts (base, function, and object contracts), TreatJS's novel contributions are its guarantee of non-interfering contract execution, its systematic approach to blame assignment, its support for contracts in the style of union and intersection types, and its notion of a parameterized contract scope, which is the building block for composable run-time generated contracts that generalize dependent function contracts. TreatJS is implemented as a library so that all aspects of a contract can be specified using the full JavaScript language. The library relies on JavaScript proxies to guarantee full interposition for contracts. It further exploits JavaScript's reflective features to run contracts in a sandbox environment, which guarantees that the execution of contract code does not modify the application state. No source code transformation or change in the JavaScript run-time system is required. The impact of contracts on execution speed is evaluated using the Google Octane benchmark.Comment: Technical Repor
    • ā€¦
    corecore