5 research outputs found

    5G New Radio for Terrestrial Broadcast: A Forward-Looking Approach for NR-MBMS

    Full text link
    "© 2019 IEEE. Personal use of this material is permitted. Permissíon from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertisíng or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works."[EN] 3GPP LTE eMBMS release (Rel-) 14, also referred to as further evolved multimedia broadcast multicast service (FeMBMS) or enhanced TV (EnTV), is the first mobile broadband technology standard to incorporate a transmission mode designed to deliver terrestrial broadcast services from conventional high power high tower (HPHT) broadcast infrastructure. With respect to the physical layer, the main improvements in FeMBMS are the support of larger inter-site distance for single frequency networks (SFNs) and the ability to allocate 100% of a carrier's resources to the broadcast payload, with self-contained signaling in the downlink. From the system architecture perspective, a receive-only mode enables free-to-air (FTA) reception with no need for an uplink or SIM card, thus receiving content without user equipment registration with a network. These functionalities are only available in the LTE advanced pro specifications as 5G new radio (NR), standardized in 3GPP from Rel-15, has so far focused entirely on unicast. This paper outlines a physical layer design for NR-MBMS, a system derived, with minor modifications, from the 5G-NR specifications, and suitable for the transmission of linear TV and radio services in either single-cell or SFN operation. This paper evaluates the NR-MBMS proposition and compares it to LTE-based FeMBMS in terms of flexibility, performance, capacity, and coverage.This work was supported in part by the European Commission through the 5G-PPP Project 5G-Xcast (H2020-ICT-2016-2 call) under Grant 761498.Gimenez, JJ.; Carcel, JL.; Fuentes, M.; Garro, E.; Elliott, S.; Vargas, D.; Menzel, C.... (2019). 5G New Radio for Terrestrial Broadcast: A Forward-Looking Approach for NR-MBMS. IEEE Transactions on Broadcasting. 65(2):356-368. https://doi.org/10.1109/TBC.2019.291211735636865

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Traffic Steering in Radio Level Integration of LTE and Wi-Fi Networks

    Get PDF
    A smartphone generates approximately 1, 614 MB of data per month which is 48 times of the data generated by a typical basic-feature cell phone. Cisco forecasts that the mobile data traffic growth will remain to increase and reach 49 Exabytes per month by 2021. However, the telecommunication service providers/operators face many challenges in order to improve cellular network capacity to match these ever-increasing data demands due to low, almost flat Average Revenue Per User (ARPU) and low Return on Investment (RoI). Spectrum resource crunch and licensing requirement for operation in cellular bands further complicate the procedure to support and manage the network. In order to deal with the aforementioned challenges, one of the most vital solutions is to leverage the integration benefits of cellular networks with unlicensed operation of Wi-Fi networks. A closer level of cellular and Wi-Fi coupling/interworking improves Quality of Service (QoS) by unified connection management to user devices (UEs). It also offloads a significant portion of user traffic from cellular Base Station (BS) to Wi-Fi Access Point (AP). In this thesis, we have considered the cellular network to be Long Term Evolution (LTE) popularly known as 4G-LTE for interworking with Wi-Fi. Third Generation Partnership Project (3GPP) defined various LTE and Wi-Fi interworking architectures from Rel-8 to Rel-11. Because of the limitations in these legacy LTE Wi-Fi interworking solutions, 3GPP proposed Radio Level Integration (RLI) architectures to enhance flow mobility and to react fast to channel dynamics. RLI node encompasses link level connection between Small cell deployments, (ii) Meeting Guaranteed Bit Rate (GBR) requirements of the users including those experiencing poor Signal to Interference plus Noise Ratio (SINR), and (iii) Dynamic steering of the flows across LTE and Wi-Fi links to maximize the system throughput. The second important problem addressed is the uplink traffic steering. To enable efficient uplink traffic steering in LWIP system, in this thesis, Network Coordination Function (NCF) is proposed. NCF is realized at the LWIP node by implementing various uplink traffic steering algorithms. NCF encompasses four different uplink traffic steering algorithms for efficient utilization of Wi-Fi resources in LWIP system. NCF facilitates the network to take intelligent decisions rather than individual UEs deciding to steer the uplink traffic onto LTE link or Wi-Fi link. The NCF algorithms work by leveraging the availability of LTE as the anchor to improvise the channel utilization of Wi-Fi. The third most important problem is to enable packet level steering in LWIP. When data rates of LTE and Wi-Fi links are incomparable, steering packets across the links create problems for TCP traffic. When the packets are received Out-of-Order (OOO) at the TCP receiver due to variation in delay experienced on each link, it leads to the generation of DUPlicate ACKnowledgements (DUP-ACK). These unnecessary DUP-ACKs adversely affect the TCP congestion window growth and thereby lead to poor TCP performance. This thesis addresses this problem by proposing a virtual congestion control mechanism (VIrtual congeStion control wIth Boost acknowLedgEment -VISIBLE). The proposed mechanism not only improves the throughput of a flow by reducing the number of unnecessary DUPACKs delivered to the TCP sender but also sends Boost ACKs in order to rapidly grow the congestion window to reap in aggregation benefits of heterogeneous links. The fourth problem considered is the placement of LWIP nodes. In this thesis, we have addressed problems pertaining to the dense deployment of LWIP nodes. LWIP deployment can be realized in colocated and non-colocated fashion. The placement of LWIP nodes is done with the following objectives: (i) Minimizing the number of LWIP nodes deployed without any coverage holes, (ii) Maximizing SINR in every sub-region of a building, and (iii) Minimizing the energy spent by UEs and LWIP nodes. Finally, prototypes of RLI architectures are presented (i.e., LWIP and LWA testbeds). The prototypes are developed using open source LTE platform OpenAirInterface (OAI) and commercial-off-the-shelf hardware components. The developed LWIP prototype is made to work with commercial UE (Nexus 5). The LWA prototype requires modification at the UE protocol stack, hence it is realized using OAI-UE. The developed prototypes are coupled with the legacy multipath protocol such as MPTCP to investigate the coupling benefits
    corecore