704 research outputs found

    Review on DNA Cryptography

    Get PDF
    Cryptography is the science that secures data and communication over the network by applying mathematics and logic to design strong encryption methods. In the modern era of e-business and e-commerce the protection of confidentiality, integrity and availability (CIA triad) of stored information as well as of transmitted data is very crucial. DNA molecules, having the capacity to store, process and transmit information, inspires the idea of DNA cryptography. This combination of the chemical characteristics of biological DNA sequences and classical cryptography ensures the non-vulnerable transmission of data. In this paper we have reviewed the present state of art of DNA cryptography.Comment: 31 pages, 12 figures, 6 table

    Biometric identity-based cryptography for e-Government environment

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    Elliptic Curve Cryptosystem for Email Encryption

    Get PDF
    The idea of information security lead to the evolution of cryptography. In other words, cryptography is the science of keeping information secure. It involves encryption and decryption of messages. The core of cryptography lies in the keys involved in encryption and decryption and maintaining the secrecy of the keys. Another important factor is the key strength, i.e. the difficulty in breaking the key and retrieving the plain text. There are various cryptographic algorithms. In this project we use Elliptic Curve Cryptography (ECC) over Galois field. This system has been proven to be stronger than known algorithms like RSA, DSA, etc. Our aim is to build an efficient elliptic curve cryptosystem for secure transmission or exchange of confidential emails over a public network

    Modelling and simulation of a biometric identity-based cryptography

    Get PDF
    Government information is a vital asset that must be kept in a trusted environment and efficiently managed by authorised parties. Even though e-Government provides a number of advantages, it also introduces a range of new security risks. Sharing confidential and top-secret information in a secure manner among government sectors tend to be the main element that government agencies look for. Thus, developing an effective methodology is essential and it is a key factor for e-Government success. The proposed e-Government scheme in this paper is a combination of identity-based encryption and biometric technology. This new scheme can effectively improve the security in authentication systems, which provides a reliable identity with a high degree of assurance. In addition, this paper demonstrates the feasibility of using Finite-state machines as a formal method to analyse the proposed protocols

    An More effective Approach of ECC Encryption Algorithm using DNA Computing

    Get PDF
    Now a day’s Cryptography is one of the broad areas for researchers. Encryption is most effective way to achieve data security. Cryptographic system entails the study of mathematical techniques of encryption and decryption to solve security problems in communication. Elliptic Curve Cryptography (ECC) is one of the most efficient techniques that are used for this issue. Many researchers have tried to exploit the features of ECC field for security applications. This paper describes an efficient approach based elliptic curve and DNA computing. The security of the scheme is based on Elliptic Curve Discrete Logarithm Problem (ECDLP). Existing DNA based cryptography technique need more computational power and more processing time with larger key sizes to provide higher level of security. The main goal of our construction is to enhance the security of elliptic curve cryptosystem using DNA Computing. Both image and text data are encrypted successfully
    • …
    corecore