4,888 research outputs found

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Renewable Energy

    Get PDF
    Renewable Energy is energy generated from natural resources - such as sunlight, wind, rain, tides and geothermal heat - which are naturally replenished. In 2008, about 18% of global final energy consumption came from renewables, with 13% coming from traditional biomass, such as wood burning. Hydroelectricity was the next largest renewable source, providing 3% (15% of global electricity generation), followed by solar hot water/heating, which contributed with 1.3%. Modern technologies, such as geothermal energy, wind power, solar power, and ocean energy together provided some 0.8% of final energy consumption. The book provides a forum for dissemination and exchange of up - to - date scientific information on theoretical, generic and applied areas of knowledge. The topics deal with new devices and circuits for energy systems, photovoltaic and solar thermal, wind energy systems, tidal and wave energy, fuel cell systems, bio energy and geo-energy, sustainable energy resources and systems, energy storage systems, energy market management and economics, off-grid isolated energy systems, energy in transportation systems, energy resources for portable electronics, intelligent energy power transmission, distribution and inter - connectors, energy efficient utilization, environmental issues, energy harvesting, nanotechnology in energy, policy issues on renewable energy, building design, power electronics in energy conversion, new materials for energy resources, and RF and magnetic field energy devices

    MODELING OF A TIDAL WAVE GENERATING SYSTEM

    Get PDF
    Basically, tidal wave is the rising of the earth ocean's surface caused by the relative motion of the Earth, Sun and the Moon, which interact via gravitational forces. It arises because the gravitational force exerted on one body by a second body is not constant across its diameter. The side nearest to the second body experiences a greater force, while the opposite side experiences a lesser force. However, tidal wave can also be created artificially using engineering approaches. It can be generated by consistently moving water with a moving pallet, swinging gate, or movable immersed block. This eventually will create disturbance at the water surface and lead to the creation of tidal wave. This project is about designing and modeling a scaled-down model of a tidal wave generating system. A water container, installed with four pressure chamber was designed and fabricated to store water. Vertical pressure is applied inside those chambers using pedals driven by DC motors. The pedals are installed inside the chambers at the water container which are controlled by PLC. The PLC is a control system which takes and processes input from the control panel and send the output to the external relay system. The outputs sent by the PLC to the external relay system will determine forward and reverse movement of the DC motors. By then, artificial tidal wave is created in the water container. The waves formed can be used for structural test and learning tools. Apart from that, the concept can also be applied at water theme parks during the process of making artificial tidal waves

    Advances in Modelling and Control of Wind and Hydrogenerators

    Get PDF
    Rapid deployment of wind and solar energy generation is going to result in a series of new problems with regards to the reliability of our electrical grid in terms of outages, cost, and life-time, forcing us to promptly deal with the challenging restructuring of our energy systems. Increased penetration of fluctuating renewable energy resources is a challenge for the electrical grid. Proposing solutions to deal with this problem also impacts the functionality of large generators. The power electronic generator interactions, multi-domain modelling, and reliable monitoring systems are examples of new challenges in this field. This book presents some new modelling methods and technologies for renewable energy generators including wind, ocean, and hydropower systems

    Direct - drive permanent magnet synchronous generator design for hydrokinetic energy extraction

    Get PDF
    Hydrokinetic turbines deliver lower shaft speeds when compared to both steam and wind turbines. Hence, a water wheel generator must operate at speeds as low as 150 - 600 rpm. This thesis describes a permanent magnet synchronous generator (PMSG) that was designed, built, and tested to serve a low speed hydrokinetic turbine. The design methodology was emphasized since designing an application specific generator poses various design and hardware construction issues. These are torque, speed, power and start-up requirements. This generator was built to operate without a speed increaser, implying very low speeds. FEA and performance results from the simulation done in ANSYS - RMXprt® and Maxwell® 2D respectively are presented. The hardware test results demonstrate that the generator performs satisfactorily while reducing the cogging torque to the greatest possible extent --Abstract, page iii

    Development of Electricity Generation and Sensor Systems for a Hydropower Propagating Wave Turbine

    Get PDF
    The Propagating Wave Turbine Project focused on the design, construction, and verification of an energy generation system that converted shaft rotation into electrical energy. A maximum power point tracking system created the optimal load profile between the voltage and current produced by an electromechanical generator. A sensor system was developed to measure power generator and transformation characteristics. A nacelle was designed and built to hold the components and connect to a Propagating Wave Turbine built by a separate project team. Operation was successful, but the shaft speeds of the wave turbine and generator were not compatible. Recommendations are provided for improvement in energy conversion

    Electromechanics of an Ocean Current Turbine

    Get PDF
    The development of a numeric simulation for predicting the performance of an Ocean Current Energy Conversion System is presented in this thesis along with a control system development using a PID controller for the achievement of specified rotational velocity set-points. In the beginning, this numeric model is implemented in MATLAB/Simulink® and it is used to predict the performance of a three phase squirrel single-cage type induction motor/generator in two different cases. The first case is a small 3 meter rotor diameter, 20 kW ocean current turbine with fixed pitch blades, and the second case a 20 meter, 720 kW ocean current turbine with variable pitch blades. Furthermore, the second case is also used for the development of a Voltage Source Variable Frequency Drive for the induction motor/generator. Comparison among the Variable Frequency Drive and a simplified model is applied. Finally, the simulation is also used to estimate the average electric power generation from the 720 kW Ocean Current Energy Conversion System which consists of an induction generator and an ocean current turbine connected with a shaft which modeled as a mechanical vibration system

    Electromechanics of an Ocean Current Turbine

    Get PDF
    The development of a numeric simulation for predicting the performance of an Ocean Current Energy Conversion System is presented in this thesis along with a control system development using a PID controller for the achievement of specified rotational velocity set-points. In the beginning, this numeric model is implemented in MATLAB/Simulink® and it is used to predict the performance of a three phase squirrel single-cage type induction motor/generator in two different cases. The first case is a small 3 meter rotor diameter, 20 kW ocean current turbine with fixed pitch blades, and the second case a 20 meter, 720 kW ocean current turbine with variable pitch blades. Furthermore, the second case is also used for the development of a Voltage Source Variable Frequency Drive for the induction motor/generator. Comparison among the Variable Frequency Drive and a simplified model is applied. Finally, the simulation is also used to estimate the average electric power generation from the 720 kW Ocean Current Energy Conversion System which consists of an induction generator and an ocean current turbine connected with a shaft which modeled as a mechanical vibration system
    • …
    corecore