123 research outputs found

    EVEREST IST - 2002 - 00185 : D23 : final report

    Get PDF
    Deliverable públic del projecte europeu EVERESTThis deliverable constitutes the final report of the project IST-2002-001858 EVEREST. After its successful completion, the project presents this document that firstly summarizes the context, goal and the approach objective of the project. Then it presents a concise summary of the major goals and results, as well as highlights the most valuable lessons derived form the project work. A list of deliverables and publications is included in the annex.Postprint (published version

    Program insertion in real-time IP multicasts

    Full text link

    Contributions to the safe execution of dynamic component-based real-time systems

    Get PDF
    Traditionally, real-time systems have based their design and execution on barely dynamic models to ensure, since design time, the temporal guarantees in the execution of their functionality. Great effort is being applied nowadays to progressively develop more dynamic systems, with the target of changing during their execution and to adapt themselves to their environment. The capability to change and to reconfigure themselves represents remarkable advantages as the capability to fix errors and to add new functionality with on-line updates. This means to be able to be updated without needing to stop the service, that may imply monetary losses in many cases. Design and development techniques based on components have become popular due to the use of components, which allows simplifying the system design, code reusability and updates through the substitution of components. The target of this thesis work is to provide certain degree of dynamism to real-time systems allowing them to replace components, incorporating new functionality of fixing existing bugs. On that purpose, a component-based framework is proposed, as well as the corresponding task in charge of providing dynamism to the system. The main contribution is to provide a framework to allow safe component replacements. Safe meaning that incorrect executions of tasks are avoided even y multiple tasks are executing concurrently and making use of the same data. Also that temporal guarantees are provided for every task. This framework incorporates a generic component model with real-time threads, a components replacement model with execution times that are known and bounded, and different strategies to apply such component replacement model. Some mechanisms to maintain a seamless and safe execution, regarding concurrency, before, during, and after applying the processes in charge of replacing running components are also described. Seamless execution means that components themselves do not perform the replacements, and safe means that temporal guarantees are provided and components are not affected in their execution. Part of these mechanisms are the system schedulability analysis and the framework tasks as well as reserving the needed resources for such scheduling to be correct. ---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------Los sistemas de tiempo real han basado tradicionalmente su desarrollo en modelos altamente predecibles ya que estos requieren garantías temporales en su ejecución. A lo largo de los años, la technología de tiempo real ha ido penetrando en diferentes campos de aplicación y ajustándose a paradigmas de desarrollo software más novedosos. Esto ha presentado y presenta en la actualidad un tremendo reto ya que estas aplicaciones suelen tener un alto grado de dinamismo, lo que entra en conflicto con la predictibilidad temporal y, en general la ejecución segura de los mismos. Hoy en dia se esta realizando un gran esfuerzo en el desarrollo de sistemas cada vez más dinamicos que permitan adaptar su estructura en tiempo de ejecución para adaptarse a entornos que presentan condiciones cambiantes. La capacidad de soportar este tipo de dinamismo presenta ventajas descatables como permitir corregir fallos y anadir funcionalidad mediante actualizaciones en caliente, es decir, poder actualizarse sin necesidad de realizar paradas en su servicio, lo que podria implicar costes monetarios en muchos casos o perdidas temporales de servicio. Por otro lado, las técnicas de diseño y desarrollo basadas en componentes se han hecho muy populares y su aplicación a los sistemas de tiempo real gana terreno día a día. Uno de los principales motivos de ellos es que el uso de componentes permite simplificar el diseño del sistema, la reutilizacion de codigo e incluso la actualizacion del mismo mediante la substitucion de componentes. En esta tesis se aborda el objetivo de proveer a los sistemas de tiempo real de cierto grado de dinamismo para poder reemplazar componentes de forma segura, que permita incorporar nuevas funcionalidades o corregir errores existentes. Para ello, en esta tesis se ha elaborado de un marco de trabajo para dar soporte a reemplazos de componentes de forma segura, entendiendo como tal que el hecho de que no se produzcan ejecuciones incorrectas debido a la ejecución concurrente de multiples tareas, asi como el garantizar los tiempos de ejecucion de cada tarea y acotar la duración temporal de los reemplazos. El marco de trabajo propuesto está basado, pues, en componentes de tiempo real, que tiene en cuenta los requisitos temporales en la ejecución de los componentes del sistema y de las tareas propias del marco que dan soporte a estos mecanismos de reemplazo. Este marco de trabajo incorpora un modelo generico de componente con tareas de tiempo real, un modelo de reemplazo de componentes cuyos tiempos de ejecucion son conocidos y limitados en tiempo y diferentes estrategias de aplicacion de dicho modelo de reemplazo de componente. Las contribuciones propuestas integran el analisis de la planificabilidad de los componentes del sistema y de las tareas del marco de componentes para permitir establecer los parámetros de reserva de los recursos necesarios para las tareas del marco. Por último, se realiza una validación empírica en la que se comprueba experimentalmente la validez del modelo tanto de forma genérica como en un escenario específico y determinando también los recursos necesarios para su implementación

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Advances in Internet Quality of Service

    Get PDF
    We describe recent advances in theories and architecture that support performance guarantees needed for quality of service networks. We start with deterministic computations and give applications to integrated services, differentiated services, and playback delays. We review the methods used for obtaining a scalable integrated services support, based on the concept of a stateless core. New probabilistic results that can be used for a statistical dimensioning of differentiated services are explained; some are based on classical queuing theory, while others capitalize on the deterministic results. Then we discuss performance guarantees in a best effort context; we review: methods to provide some quality of service in a pure best effort environment; methods to provide some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Definition and specification of connectivity and QoE/QoS management mechanisms – final report

    Get PDF
    This document summarizes the WP5 work throughout the project, describing its functional architecture and the solutions that implement the WP5 concepts on network control and orchestration. For this purpose, we defined 3 innovative controllers that embody the network slicing and multi tenancy: SDM-C, SDM-X and SDM-O. The functionalities of each block are detailed with the interfaces connecting them and validated through exemplary network processes, highlighting thus 5G NORMA innovations. All the proposed modules are designed to implement the functionality needed to provide the challenging KPIs required by future 5G networks while keeping the largest possible compatibility with the state of the art

    Building the Future Internet through FIRE

    Get PDF
    The Internet as we know it today is the result of a continuous activity for improving network communications, end user services, computational processes and also information technology infrastructures. The Internet has become a critical infrastructure for the human-being by offering complex networking services and end-user applications that all together have transformed all aspects, mainly economical, of our lives. Recently, with the advent of new paradigms and the progress in wireless technology, sensor networks and information systems and also the inexorable shift towards everything connected paradigm, first as known as the Internet of Things and lately envisioning into the Internet of Everything, a data-driven society has been created. In a data-driven society, productivity, knowledge, and experience are dependent on increasingly open, dynamic, interdependent and complex Internet services. The challenge for the Internet of the Future design is to build robust enabling technologies, implement and deploy adaptive systems, to create business opportunities considering increasing uncertainties and emergent systemic behaviors where humans and machines seamlessly cooperate

    Cooperation Strategies for Enhanced Connectivity at Home

    Get PDF
    WHILE AT HOME , USERS MAY EXPERIENCE A POOR I NTERNET SERVICE while being connected to their 802.11 Access Points (APs). The AP is just one component of the Internet Gateway (GW) that generally includes a backhaul connection (ADSL, fiber,etc..) and a router providing a LAN. The root cause of performance degradation may be poor/congested wireless channel between the user and the GW or congested/bandwidth limited backhaul connection. The latter is a serious issue for DSL users that are located far from the central office because the greater the distance the lesser the achievable physical datarate. Furthermore, the GW is one of the few devices in the home that is left always on, resulting in energy waste and electromagnetic pollution increase. This thesis proposes two strategies to enhance Internet connectivity at home by (i) creating a wireless resource sharing scheme through the federation and the coordination of neighboring GWs in order to achieve energy efficiency while avoiding congestion, (ii) exploiting different king of connectivities, i.e., the wired plus the cellular (3G/4G) connections, through the aggregation of the available bandwidth across multiple access technologies. In order to achieve the aforementioned strategies we study and develop: • A viable interference estimation technique for 802.11 BSSes that can be implemented on commodity hardware at the MAC layer, without requiring active measurements, changes in the 802.11 standard, cooperation from the wireless stations (WSs). We extend previous theoretical results on the saturation throughput in order to quantify the impact in term of throughput loss of any kind of interferer. We im- plement and extensively evaluate our estimation technique with a real testbed and with different kind of interferer, achieving always good accuracy. • Two available bandwidth estimation algorithms for 802.11 BSSes that rely only on passive measurements and that account for different kind of interferers on the ISM band. This algorithms can be implemented on commodity hardware, as they require only software modifications. The first algorithm applies to intra-GW while the second one applies to inter-GW available bandwidth estimation. Indeed, we use the first algorithm to compute the metric for assessing the Wi-Fi load of a GW and the second one to compute the metric to decide whether accept incoming WSs from neighboring GWs or not. Note that in the latter case it is assumed that one or more WSs with known traffic profile are requested to relocate from one GW to another one. We evaluate both algorithms with simulation as well as with a real test-bed for different traffic patterns, achieving high precision. • A fully distributed and decentralized inter-access point protocol for federated GWs that allows to dynamically manage the associations of the wireless stations (WSs) in the federated network in order to achieve energy efficiency and offloading con- gested GWs, i.e, we keep a minimum number of GWs ON while avoiding to create congestion and real-time throughput loss. We evaluate this protocol in a federated scenario, using both simulation and a real test-bed, achieving up to 65% of energy saving in the simulated setting. We compare the energy saving achieved by our protocol against a centralized optimal scheme, obtaining close to optimal results. • An application level solution that accelerates slow ADSL connections with the parallel use of cellular (3G/4G) connections. We study the feasibility and the potential performance of this scheme at scale using both extensive throughput measurement of the cellular network and trace driven analysis. We validate our solution by implementing a real test bed and evaluating it "in the wild, at several residential locations of a major European city. We test two applications: Video-on-Demand (VoD) and picture upload, obtaining remarkable throughput increase for both applications at all locations. Our implementation features a multipath scheduler which we compare to other scheduling policies as well as to transport level solution like MTCP, obtaining always better result
    corecore