6,545 research outputs found

    Examining the role of smart TVs and VR HMDs in synchronous at-a-distance media consumption

    Get PDF
    This article examines synchronous at-a-distance media consumption from two perspectives: How it can be facilitated using existing consumer displays (through TVs combined with smartphones), and imminently available consumer displays (through virtual reality (VR) HMDs combined with RGBD sensing). First, we discuss results from an initial evaluation of a synchronous shared at-a-distance smart TV system, CastAway. Through week-long in-home deployments with five couples, we gain formative insights into the adoption and usage of at-a-distance media consumption and how couples communicated during said consumption. We then examine how the imminent availability and potential adoption of consumer VR HMDs could affect preferences toward how synchronous at-a-distance media consumption is conducted, in a laboratory study of 12 pairs, by enhancing media immersion and supporting embodied telepresence for communication. Finally, we discuss the implications these studies have for the near-future of consumer synchronous at-a-distance media consumption. When combined, these studies begin to explore a design space regarding the varying ways in which at-a-distance media consumption can be supported and experienced (through music, TV content, augmenting existing TV content for immersion, and immersive VR content), what factors might influence usage and adoption and the implications for supporting communication and telepresence during media consumption

    TransparentHMD: Revealing the HMD User's Face to Bystanders

    Get PDF
    While the eyes are very important in human communication, once a user puts on a head mounted display (HMD), the face is obscured from the outside world's perspective. This leads to communication problems when bystanders approach or collaborate with an HMD user. We introduce transparentHMD, which employs a head-coupled perspective technique to produce an illusion of a transparent HMD to bystanders. We created a self contained system, based on a mobile device mounted on the HMD with the screen facing bystanders. By tracking the relative position of the bystander using the smartphone's camera, we render an adapting perspective view in realtime that creates the illusion of a transparent HMD. By revealing the user's face to bystanders, our easy to implement system allows for opportunities to investigate a plethora of research questions particularly related to collaborative VR systems

    A MOBILE PLATFORM FOR LOCATION-BASED SERVICE APPLICATIONS USING AUGMENTED REALITY: ONLINE MAP, TRACKING AND NAVIGATION ON GOOGLE ANDROID SMARTPHONE DEVICE (TOC, Abstract, Chapter 1 and Reference only)

    Get PDF
    This project paper is about Augmented Reality (AR) using location-based visualization and implementation on the smartphone devices. That is partly because smartphone comes packed with built-in sensors have grown and become popular over the years. This will explore the interactive and interaction Location Based Services that AR allows on Android devices. The use of mobile applications and advancement in mobile technology such as Global Positioning System (GPS), compass and accelerometer sensors are able to identify and determine the location and orientation of the device, location-based applications with augmented reality views are possible. AR combines the real world with virtual, the integration of information in the user's environment in real time, the user interaction techniques of representing rich, intuitive information data of the real world. The AR application which typically takes the image of the integrated camera, positioning location as a representation of the real world and project objects on top of this image to create the AR view. The research was initiated by exploring and reviewing literature related domain and existing AR application available on Android devices. There are a number of AR applications available and the rapid development of Android smartphone devices has provided an improved platform for the application of mobile AR technologies. Developing application will help the researcher explore the topic while going through this technology. The aim of this study is to develop a combination of location-based information and AR features by blending both visual, map-based and nonmap based elements like live projection of a nearby landmark on camera preview on mobile devices, utilizing free and open source software development tools. In the context of this paper a prototype application, based on the Android platform and Mixare engine library is developed. This paper showed the initial thoughts on this application and overall process that leads to the final system development. This report describes MyARTGuide, a prototype application of augmented reality designed to be run over Android based smartphone. The user can now look through their phone as if taking a picture to look at the augmented world which leads to a better user experience. MyARTGuide is developed for experiment, simulation and to test the AR functionality of these project objectives is not a fully functional product. Thus, there are still more areas that can be improved and new features can be added. With the use of AR and Andorid technology it is possible to spread the experience which will be shown in this report. (ABSTRACT BY AUTHOR

    A Utility Framework for Selecting Immersive Interactive Capability and Technology for Virtual Laboratories

    Get PDF
    There has been an increase in the use of virtual reality (VR) technology in the education community since VR is emerging as a potent educational tool that offers students with a rich source of educational material and makes learning exciting and interactive. With a rise of popularity and market expansion in VR technology in the past few years, a variety of consumer VR electronics have boosted educators and researchers’ interest in using these devices for practicing engineering and science laboratory experiments. However, little is known about how such devices may be well-suited for active learning in a laboratory environment. This research aims to address this gap by formulating a utility framework to help educators and decision-makers efficiently select a type of VR device that matches with their design and capability requirements for their virtual laboratory blueprint. Furthermore, a framework use case is demonstrated by not only surveying five types of VR devices ranging from low-immersive to full-immersive along with their capabilities (i.e., hardware specifications, cost, and availability) but also considering the interaction techniques in each VR device based on the desired laboratory task. To validate the framework, a research study is carried out to compare these five VR devices and investigate which device can provide an overall best-fit for a 3D virtual laboratory content that we implemented based on the interaction level, usability and performance effectiveness

    Instructional Design, Learning Satisfaction, and Learning Outcome in a Virtual Reality Learning Environment Aimed at Improving the Cognition of Computer Hardware Components

    Get PDF
    The integration of teaching materials with virtual reality (VR) technology is a common method for improving student interaction in courses, providing students with experience related to real-life spatial environments in class. This study developed a cost-effective and portable device that offers an immersive VR experience for learning the identification of computer hardware components. This device enables teachers to train technicians in computer hardware fabrication. The experimental group comprised 12 participants. According to the results of the learning satisfaction analysis, the students highly enjoyed the immersive learning experience. Descriptive statistics and the Wilcoxon matched-pairs signed-rank test are used for statistical analysis. Analysis of cognitive learning outcomes indicated that all students accurately identified all computer components after the intervention. By using the immersion teaching method, teachers could considerably improve the learning outcomes of students related to their cognition of computer hardware components
    corecore