15 research outputs found

    Electromagnetic nanopositioner

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2006.Includes bibliographical references (p. 195-200).This thesis presents the analysis, design, and control of a new class of magnetic nanopositioner. Applications for this class of positioner include sample positioning for scanning microscopy and interferometry, nanofabrication, vibration cancellation, biological cell tracking/positioning, and beam focusing/steering. The nanometer-resolution positioning required in these applications is often provided using piezoelectric ceramic actuators. The drawbacks to using piezoelectric actuators include high hysteretic heating, lightly damped structural resonances, the need for preload on the actuator stack, as well as the requirement for a high voltage amplifier. This thesis demonstrates an electromagnetically driven nanopositioner that is suspended on rubber bearings as a promising, low cost alternative to the piezoelectric nanopositioners. Several key features of the electromagnetic nanopositioner are the flux-steering actuator that applies a force linear in both coil current and displacement, replacement of the conventional metal flexures with rubber bearings, as well as power and sense electronics that can be easily integrated into a compact package. A prototype of this class of nanopositioner with 100,pm of travel and a maximum force output of 460 N was built and tested.(cont.) A closed-loop bandwidth of 580 Hz was obtained using capacitance distance sensor feedback. The feasibility and procedure for casting rubber bearings was investigated. Several room-temperature vulcanizing (RTV) rubbers were considered for low volume, in-lab production of test specimens. A compression specimen was cast from a two-part RTV silicone rubber that was found to be suitable. A compression fixture that was previously used to test bonded rubber pads was modified to accept the cast rubber bearings. The cast rubber bearing was found to have the predicted DC stiffness and the stiffness increased with frequency as expected. Casting of rubber bearings was demonstrated as a feasible method for putting rubber bearings into devices such as nanopositioners.by David P. Cuff.S.M

    Design of a high-speed, meso-scale nanopositioners driven by electromagnetic actuators

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2008.Includes bibliographical references (p. 218-230).The purpose of this thesis is to generate the design and fabrication knowledge that is required to engineer high-speed, six-axis, meso-scale nanopositioners that are driven by electromagnetic actuators. When compared to macro-scale nanopositioners, meso-scale nanopositioners enable a combination of greater bandwidth, improved thermal stability, portability, and capacity for massively parallel operation. Meso-scale nanopositioners are envisioned to impact emerging applications in data storage and nanomanufacturing, which will benefit from low-cost, portable, multi-axis nanopositioners that may position samples with nanometer-level precision at bandwidth of 100s of Hz and over a working envelope greater than 10x10x10 micrometers3 This thesis forms the foundation of design and fabrication knowledge required to engineer mesoscale systems to meet these needs.The design combines a planar silicon flexure bearing and unique moving-coil microactuators that employ millimeter-scale permanent magnets and stacked, planar-spiral micro-coils. The new moving-coil actuator outperforms previous coil designs as it enables orthogonal and linear force capability in two axes while minimizing parasitic forces. The system performance was modeled in the structural, thermal, electrical, and magnetic domains with analytical and finite-element techniques. A new method was created to model the three-dimensional permanent magnet fields of finite magnet arrays. The models were used to optimize the actuator coil and flexure geometry in order to achieve the desired motions, stiffness, and operating temperature, and to reduce thermal error motions.A new microfabrication process and design-for-manufacturing rules were generated to integrate multilayer actuator coils and silicon flexure bearings. The process combines electroplating for the copper coils, a silicon dioxide interlayer dielectric, and deep reactive-ion etching for the silicon flexures and alignment features.(cont.) Microfabrication experiments were used to formulate coil geometry design rules that minimized the delamination and cracking of the materials that comprise the coil structure. Experiments were also used to measure the previously-unreported breakdown strength of the unannealed, PECVD silicon dioxide interlayer dielectric. The results of this research were used to design and fabricate a meso-scale nanopositioner system. The nanopositioner was measured to have a range of motion of 10 micrometers in the lateral directions, a range of 2 micrometers in the out-of-plane direction, an angular range of 0.5 degrees, and a first mode resonant frequency at 900 Hz. Open-loop calibration has been shown to minimize parasitic in-plane motion to less than 100 nm over the range of motion.by Dariusz S. Golda.Ph.D

    Microcavity enhancement of silicon vacancy centres in diamond and europium ions in yttria

    Get PDF

    Microelectromechanical Systems and Devices

    Get PDF
    The advances of microelectromechanical systems (MEMS) and devices have been instrumental in the demonstration of new devices and applications, and even in the creation of new fields of research and development: bioMEMS, actuators, microfluidic devices, RF and optical MEMS. Experience indicates a need for MEMS book covering these materials as well as the most important process steps in bulk micro-machining and modeling. We are very pleased to present this book that contains 18 chapters, written by the experts in the field of MEMS. These chapters are groups into four broad sections of BioMEMS Devices, MEMS characterization and micromachining, RF and Optical MEMS, and MEMS based Actuators. The book starts with the emerging field of bioMEMS, including MEMS coil for retinal prostheses, DNA extraction by micro/bio-fluidics devices and acoustic biosensors. MEMS characterization, micromachining, macromodels, RF and Optical MEMS switches are discussed in next sections. The book concludes with the emphasis on MEMS based actuators

    International Symposium on Magnetic Suspension Technology, Part 1

    Get PDF
    The goal of the symposium was to examine the state of technology of all areas of magnetic suspension and to review related recent developments in sensors and controls approaches, superconducting magnet technology, and design/implementation practices. The symposium included 17 technical sessions in which 55 papers were presented. The technical session covered the areas of bearings, sensors and controls, microgravity and vibration isolation, superconductivity, manufacturing applications, wind tunnel magnetic suspension systems, magnetically levitated trains (MAGLEV), space applications, and large gap magnetic suspension systems

    The 15th Aerospace Mechanisms Symposium

    Get PDF
    Technological areas covered include: aerospace propulsion; aerodynamic devices; crew safety; space vehicle control; spacecraft deployment, positioning, and pointing; deployable antennas/reflectors; and large space structures. Devices for payload deployment, payload retention, and crew extravehicular activities on the space shuttle orbiter are also described

    Eighteenth Space Simulation Conference: Space Mission Success Through Testing

    Get PDF
    The Institute of Environmental Sciences' Eighteenth Space Simulation Conference, 'Space Mission Success Through Testing' provided participants with a forum to acquire and exchange information on the state-of-the-art in space simulation, test technology, atomic oxygen, program/system testing, dynamics testing, contamination, and materials. The papers presented at this conference and the resulting discussions carried out the conference theme 'Space Mission Success Through Testing.
    corecore