281,181 research outputs found

    Aqueous-Based Extrusion Fabrication of Ceramics on Demand

    Get PDF
    Aqueous-Based Extrusion Fabrication is an additive manufacturing technique that extrudes ceramic slurries of high solids loading layer by layer for part fabrication. The material reservoir in a previously developed system has been modified to allow for starting and stopping of the extrusion process on demand. Design pros and cons are examined and a comparison between two material reservoir designs is made. Tests are conducted to determine the optimal deposition parameters for starting and stopping the extrudate on demand. The collected test data is used for the development of a deposition strategy that improves material deposition consistency, including reduced material buildup at sharp corners. Example parts are fabricated using the deposition strategy and hardware design.Mechanical Engineerin

    A general approach for robust integrated polarization rotators

    Get PDF
    Integrated polarization rotators suffer from very high sensitivity to fabrication errors. A polarization rotator scheme that substantially increases fabrication tolerances is proposed. In the proposed scheme, two tunable polarization phase shifters are used to connect three rotator waveguide sections. By means of properly setting the polarization phase shifters, fabrication errors are compensated and perfect polarization rotation is achieved. Analytical conditions are shown that determine the maximum deviation that can be corrected with the proposed scheme. A design example is discussed, where the thermo-optic effect is used to provide the required tunable polarization phase shifting. Calculated 40dB extinction ratio is shown in presence of fabrication errors that would yield a 4dB extinction ratio in the conventional approach. © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.The authors want to aknowledge Universidad de Málaga alaga, Campus de Excelencia Internacional Andalucia Tech for their support

    Materials science: the key to revolutionary breakthroughs in micro-fluidic devices

    Get PDF
    In microfluidics, valves and pumps that can combine specifications like precise flow control, provision of precise reagent quantities, minimal sample carryover, and low-cost manufacture, while also being inherently compatible with microfluidic system fabrication, are beyond the current state of the art. Actuators in micro-fluidics made using stimuli-responsive materials are therefore of great interest as functional materials since actuation can be controlled without physical contact, offering improvements in versatility during manifold fabrication, and control of the actuation mechanism. Herein we review the potential use of novel approaches to valving and pumping based on stimuli-responsive polymers for controlling fluid movement within micro-fluidic channels. This has the potential to dramatically simplify the design, fabrication and cost of microfluidic systems. In particular, stimuli-responsive gels incorporating ionic liquids (ILs) produce so-called ‘ionogels’ that have many advantages over conventional materials. For example, through the tailoring of chemical and physical properties of ILs, robustness, acid/ base character, viscosity and other critical operational characteristics can be finely adjusted. Therefore, the characteristics of the ionogels can be tuned by simply changing the IL and so the actuation behaviour of micro-valves made from these novel materials can be more closely controlled

    An intelligent approach to design three-dimensional aircraft sheet metal part model for manufacture

    Get PDF
    Aircraft sheet metal part manufacturing is a knowledge-intensive process, and the manufacturability and manufacturing information are required to be considered in three-dimensional (3D) model by knowledge reuse. This paper presents a 3D model structure of the aircraft sheet metal part and an intelligent approach to design the model for manufacture combining intelligent manufacturability analysis with manufacturing information definition. Processability of part, formability of material and cost of fabrication are proposed to analyse the manufacturability of the part. Knowledge base for manufacturability analysis is established, and knowledge is reused to evaluate the part’s manufacturability intelligently to meet the constraints of manufacturing conditions. Non-geometric information is defined in the 3D model to meet the needs of digital manufacturing and inspection using model-based technology. An example is given to describe the process of design for manufacture, which shows that the approach can realize the concurrent design and digital manufacturing of aircraft sheet metal

    A Manufacturer Design Kit for Multi-Chip Power Module Layout Synthesis

    Get PDF
    The development of Multi-Chip Power Modules (MCPMs) has been a key factor in recent advancements in power electronics technologies. MCPMs achieve higher power density by combining multiple power semiconductor devices into one package. The work detailed in this thesis is part of an ongoing project to develop a computer-aided design software tool known as PowerSynth for MCPM layout synthesis and optimization. This thesis focuses on the definition and design of a Manufacturer Design Kit (MDK) for PowerSynth, which enables the designer to design an MCPM for a manufacturer’s fabrication process. The MDK is comprised of a layer stack and technology library, design rule checking (DRC), and layout versus schematic checking. File formats have been defined for layer stack and design rule input, and import functions have been written and integrated with the existing user interface and data structures to allow PowerSynth to accept these file formats as a form of input. Finally, an exhaustive DRC function has been implemented to allow the designer to verify that a synthesized layout meets all design rules before committing the design to manufacturing. This function was validated by running DRC on an example layout solution using two different sets of design rules

    Hybrid thermocouple development program

    Get PDF
    The design and development of a hybrid thermocouple, having a segmented SiGe-PbTe n-leg encapsulated within a hollow cylindrical p-SiGe leg, is described. Hybrid couple efficiency is calculated to be 10% to 15% better than that of a all-SiGe couple. A preliminary design of a planar RTG, employing hybrid couples and a water heat pipe radiator, is described as an example of a possible system application. Hybrid couples, fabricated initially, were characterized by higher than predicted resistance and, in some cases, bond separations. Couples made later in the program, using improved fabrication techniques, exhibited normal resistances, both as-fabricated and after 700 hours of testing. Two flat-plate sections of the reference design thermoelectric converter were fabricated and delivered to NASA Lewis for testing and evaluation
    corecore