4,944 research outputs found

    Prevalence of haptic feedback in robot-mediated surgery : a systematic review of literature

    Get PDF
    © 2017 Springer-Verlag. This is a post-peer-review, pre-copyedit version of an article published in Journal of Robotic Surgery. The final authenticated version is available online at: https://doi.org/10.1007/s11701-017-0763-4With the successful uptake and inclusion of robotic systems in minimally invasive surgery and with the increasing application of robotic surgery (RS) in numerous surgical specialities worldwide, there is now a need to develop and enhance the technology further. One such improvement is the implementation and amalgamation of haptic feedback technology into RS which will permit the operating surgeon on the console to receive haptic information on the type of tissue being operated on. The main advantage of using this is to allow the operating surgeon to feel and control the amount of force applied to different tissues during surgery thus minimising the risk of tissue damage due to both the direct and indirect effects of excessive tissue force or tension being applied during RS. We performed a two-rater systematic review to identify the latest developments and potential avenues of improving technology in the application and implementation of haptic feedback technology to the operating surgeon on the console during RS. This review provides a summary of technological enhancements in RS, considering different stages of work, from proof of concept to cadaver tissue testing, surgery in animals, and finally real implementation in surgical practice. We identify that at the time of this review, while there is a unanimous agreement regarding need for haptic and tactile feedback, there are no solutions or products available that address this need. There is a scope and need for new developments in haptic augmentation for robot-mediated surgery with the aim of improving patient care and robotic surgical technology further.Peer reviewe

    Methods and Tools for Objective Assessment of Psychomotor Skills in Laparoscopic Surgery

    Get PDF
    Training and assessment paradigms for laparoscopic surgical skills are evolving from traditional mentor–trainee tutorship towards structured, more objective and safer programs. Accreditation of surgeons requires reaching a consensus on metrics and tasks used to assess surgeons’ psychomotor skills. Ongoing development of tracking systems and software solutions has allowed for the expansion of novel training and assessment means in laparoscopy. The current challenge is to adapt and include these systems within training programs, and to exploit their possibilities for evaluation purposes. This paper describes the state of the art in research on measuring and assessing psychomotor laparoscopic skills. It gives an overview on tracking systems as well as on metrics and advanced statistical and machine learning techniques employed for evaluation purposes. The later ones have a potential to be used as an aid in deciding on the surgical competence level, which is an important aspect when accreditation of the surgeons in particular, and patient safety in general, are considered. The prospective of these methods and tools make them complementary means for surgical assessment of motor skills, especially in the early stages of training. Successful examples such as the Fundamentals of Laparoscopic Surgery should help drive a paradigm change to structured curricula based on objective parameters. These may improve the accreditation of new surgeons, as well as optimize their already overloaded training schedules

    V-ANFIS for Dealing with Visual Uncertainty for Force Estimation in Robotic Surgery

    Get PDF
    Accurate and robust estimation of applied forces in Robotic-Assisted Minimally Invasive Surgery is a very challenging task. Many vision-based solutions attempt to estimate the force by measuring the surface deformation after contacting the surgical tool. However, visual uncertainty, due to tool occlusion, is a major concern and can highly affect the results' precision. In this paper, a novel design of an adaptive neuro-fuzzy inference strategy with a voting step (V-ANFIS) is used to accommodate with this loss of information. Experimental results show a significant accuracy improvement from 50% to 77% with respect to other proposals.Peer ReviewedPostprint (published version

    Spider surgical system versus multiport laparoscopic surgery. Performance comparison on a surgical simulator

    Get PDF
    BACKGROUND: The rising interest towards minimally invasive surgery has led to the introduction of laparo-endoscopic single site (LESS) surgery as the natural evolution of conventional multiport laparoscopy. However, this new surgical approach is hampered with peculiar technical difficulties. The SPIDER surgical system has been developed in the attempt to overcome some of these challenges. Our study aimed to compare standard laparoscopy and SPIDER technical performance on a surgical simulator, using standardized tasks from the Fundamentals of Laparoscopic Surgery (FLS). METHODS: Twenty participants were divided into two groups based on their surgical laparoscopic experience: 10 PGY1 residents were included in the inexperienced group and 10 laparoscopists in the experienced group. Participants performed the FLS pegboard transfers task and pattern cutting task on a laparoscopic box trainer. Objective task scores and subjective questionnaire rating scales were used to compare conventional laparoscopy and SPIDER surgical system. RESULTS: Both groups performed significantly better in the FLS scores on the standard laparoscopic simulator compared to the SPIDER. Inexperienced group: Task 1 scores (median 252.5 vs. 228.5; p = 0.007); Task 2 scores (median 270.5 vs. 219.0; p = 0.005). Experienced group: Task 1 scores (median 411.5 vs. 309.5; p = 0.005); Task 2 scores (median 418.0 vs. 331.5; p = 0.007). Same aspects were highlighted for the subjective evaluations, except for the inexperienced surgeons who found both devices equivalent in terms of ease of use only in the peg transfer task. CONCLUSIONS: Even though the SPIDER is an innovative and promising device, our study proved that it is more challenging than conventional laparoscopy in a population with different degrees of surgical experience. We presume that a possible way to overcome such challenges could be the development of tailored training programs through simulation methods. This may represent an effective way to deliver training, achieve mastery and skills and prepare surgeons for their future clinical experience

    Download the full PDF of Jefferson Surgical Solutions Spring 2009, Volume 4, Number 1.

    Get PDF
    Download the full PDF of Jefferson Surgical Solutions Spring 2009, Volume 4, Number 1

    Ring and Peg Simulation for Minimally Invasive Surgical Robot

    Get PDF
    Surgical procedures utilizing minimally invasive laparoscopic techniques have shown less complications, better cosmetic results, and less time in the hospital than conventional surgery. These advantages are partially offset by inherent difficulties of the procedures which include an inverted control scheme, instrument clashing, and loss of triangulation. Surgical robots have been designed to overcome the limitations, the Da Vinci being the most widely used. A dexterous in vivo, two-armed robot, designed to enter an insufflated abdomen with a limited insertion profile and expand to perform a variety of operations, has been created as a less expensive, versatile alternative to the Da Vinci. Various surgical simulators are currently marketed to help with the rigors of training and testing potential surgeons for the Da Vinci system, and have been proven to be effective at improving surgical skills. Using the existing simulators as a baseline, the goal of this thesis was to design, build, and test a ring and peg simulation that emulates the four degree of freedom minimally invasive surgical robot from UNL. The simulation was created in the virtual reality software platform Vizard using the python programming language. Featuring imported visual models and compound simple shape collision objects, the simulation monitors and generates a metric file that records the user’s time to task completion along with various errors. A preliminary study was done on the simulation that measured seven participant’s performance on the simulation over three consecutive attempts. The study showed that participant’s time to completion and amount of recorded errors decreased across the three trials, indicating improvement in the robot operation with use of the simulation. The validation study provided confidence in continued development and testing of the introductory surgical robot simulation trainer. Adviser: Shane Farrito

    Ring and Peg Simulation for Minimally Invasive Surgical Robot

    Get PDF
    Surgical procedures utilizing minimally invasive laparoscopic techniques have shown less complications, better cosmetic results, and less time in the hospital than conventional surgery. These advantages are partially offset by inherent difficulties of the procedures which include an inverted control scheme, instrument clashing, and loss of triangulation. Surgical robots have been designed to overcome the limitations, the Da Vinci being the most widely used. A dexterous in vivo, two-armed robot, designed to enter an insufflated abdomen with a limited insertion profile and expand to perform a variety of operations, has been created as a less expensive, versatile alternative to the Da Vinci. Various surgical simulators are currently marketed to help with the rigors of training and testing potential surgeons for the Da Vinci system, and have been proven to be effective at improving surgical skills. Using the existing simulators as a baseline, the goal of this thesis was to design, build, and test a ring and peg simulation that emulates the four degree of freedom minimally invasive surgical robot from UNL. The simulation was created in the virtual reality software platform Vizard using the python programming language. Featuring imported visual models and compound simple shape collision objects, the simulation monitors and generates a metric file that records the user’s time to task completion along with various errors. A preliminary study was done on the simulation that measured seven participant’s performance on the simulation over three consecutive attempts. The study showed that participant’s time to completion and amount of recorded errors decreased across the three trials, indicating improvement in the robot operation with use of the simulation. The validation study provided confidence in continued development and testing of the introductory surgical robot simulation trainer. Adviser: Shane Farrito

    Ring and Peg Simulation for Minimally Invasive Surgical Robot

    Get PDF
    Surgical procedures utilizing minimally invasive laparoscopic techniques have shown less complications, better cosmetic results, and less time in the hospital than conventional surgery. These advantages are partially offset by inherent difficulties of the procedures which include an inverted control scheme, instrument clashing, and loss of triangulation. Surgical robots have been designed to overcome the limitations, the Da Vinci being the most widely used. A dexterous in vivo, two-armed robot, designed to enter an insufflated abdomen with a limited insertion profile and expand to perform a variety of operations, has been created as a less expensive, versatile alternative to the Da Vinci. Various surgical simulators are currently marketed to help with the rigors of training and testing potential surgeons for the Da Vinci system, and have been proven to be effective at improving surgical skills. Using the existing simulators as a baseline, the goal of this thesis was to design, build, and test a ring and peg simulation that emulates the four degree of freedom minimally invasive surgical robot from UNL. The simulation was created in the virtual reality software platform Vizard using the python programming language. Featuring imported visual models and compound simple shape collision objects, the simulation monitors and generates a metric file that records the user’s time to task completion along with various errors. A preliminary study was done on the simulation that measured seven participant’s performance on the simulation over three consecutive attempts. The study showed that participant’s time to completion and amount of recorded errors decreased across the three trials, indicating improvement in the robot operation with use of the simulation. The validation study provided confidence in continued development and testing of the introductory surgical robot simulation trainer. Adviser: Shane Farrito
    • …
    corecore