826 research outputs found

    A Wideband 77-GHz, 17.5-dBm Fully Integrated Power Amplifier in Silicon

    Get PDF
    A 77-GHz, +17.5 dBm power amplifier (PA) with fully integrated 50-Ω input and output matching and fabricated in a 0.12-µm SiGe BiCMOS process is presented. The PA achieves a peak power gain of 17 dB and a maximum single-ended output power of 17.5 dBm with 12.8% of power-added efficiency (PAE). It has a 3-dB bandwidth of 15 GHz and draws 165 mA from a 1.8-V supply. Conductor-backed coplanar waveguide (CBCPW) is used as the transmission line structure resulting in large isolation between adjacent lines, enabling integration of the PA in an area of 0.6 mm^2. By using a separate image-rejection filter incorporated before the PA, the rejection at IF frequency of 25 GHz is improved by 35 dB, helping to keep the PA design wideband

    Design of RF Receiver Front end Subsystems with Low Noise Amplifier and Active Mixer for Intelligent Transportation Systems Application

    Get PDF
    This paper presents the design, simulation, and characterization of a novel low-noise amplifier (LNA) and active mixer for intelligent transportation system applications. A low noise amplifier is the key component of RF receiver systems. Design, simulation, and characterization of LNA have been performed to obtain the optimum value of noise figure, gain and reflection coefficient. Proposed LNA achieves measured voltage gains of ~18 dB, reflection coefficients of -20 dB, and noise figures of ~2 dB at 5.9 GHz, respectively. The active mixer is a better choice for a modern receiver system over a passive mixer. Key sight advanced design system in conjunction with the electromagnetic simulation tool, has been to obtain the optimal conversion gain and noise figure of the active mixer. The lower and upper resonant frequencies of mixer have been obtained at 2.45 GHz and 5.25 GHz, respectively. The measured conversion gains at lower and upper frequencies are 12 dB and 10.2 dB, respectively. The measured noise figures at lower and upper frequencies are 5.8 dB and 6.5 dB, respectively. The measured mixer interception point at lower and upper frequencies are 3.9 dBm and 4.2 dBm

    Advanced High Efficiency and Broadband Power Amplifiers Based on GaN HEMT for Wireless Applications

    Get PDF
    In advanced wireless communication systems, a rapid increase in the mobile data traffic and broad information bandwidth requirement can lead to the use of complex spectrally efficient modulation schemes such as orthogonal frequency-division multiplexing (OFDM). Generally, complex non-constant envelope modulated signals have very high peak-to-average ratios (PAPR). Doherty Power Amplifier (DPA) is the most commonly used power amplifier (PA) architecture for meeting high efficiency requirement in advanced communication systems, in the presence of high PAPR signals. However, limited bandwidth of the conventional DPA is often identified as a bottleneck for widespread deployment in base-station application for multi-standard communication signals. The research in this thesis focuses on the development of new designs to overcome the bandwidth limitations of a conventional PA. In particular, the bandwidth limitation factors of a conventional DPA architecture are studied. Moreover, a novel design technique is proposed for DPA’s bandwidth extension. In the first PA design, limited bandwidth and linearity problems are addressed simultaneously. For this purpose, a new Class-AB PA with extended bandwidth and improved linearity is presented for LTE 5 W pico-cell base-station over a frequency range of 1.9–2.5 GHz. A two-tone load/source-pull and bias point optimization techniques are used to extract the sweet spots for optimum efficiency and linearity from the 6 W Cree GaN HEMT device for the whole frequency band. The realized prototype presented saturated PAE higher than 60%, a power gain of 13 dB and an average output power of 36.5 dBm over the desired bandwidth. The proposed PA is also characterized by QAM-256 and LTE input communication signals for linearity characterization. Measured ACPRs are lower than -40 dBc for an input power of 17 dBm. The documented results indicate that the proposed Class-AB architecture is suitable for pico-cell base-station application. In the second PA design, an inherent bandwidth limitation of Class-F power amplifier forced by the improper load harmonics terminations at multiple harmonics is investigated and analyzed. It is demonstrated that the impedance tuning of the second and third harmonics at the drain terminal of a transistor is crucial to achieve a broadband performance. The effect of harmonics terminations on power amplifier’s bandwidth up to fourth harmonics is investigated. The implemented broadband Class-F PA achieved maximum saturated drain efficiency 60-77%, and 10 W output power throughout (1.1-2.1 GHz) band. The simulated and measured results verify that the presented Class-F PA is suitable for a high-efficiency system application in wireless communications over a wide range of frequencies. In the third PA design, a single- and dual-input DPA for LTE application in the 3.5 GHz frequency band are presented and compared. The main goal of this study is to improve the performance of gallium–nitride (GaN) Doherty transmitters over a wide bandwidth in the 3.5 GHz frequency band. For this purpose, the linearity-efficiency trade-off for the two proposed architectures is discussed in detail. Simulated results demonstrate that the single- and dual-input DPA exhibited a peak drain efficiency (DE) of 72.4% and 77%, respectively. Both the circuits showed saturated output power more than 42.9 dBm throughout the designed band. Saturated efficiency, gain and bandwidth of dual-input DPA are higher than that of the single-input DPA. On the other side, dual-input DPA linearity is worse as compared to the single-input DPA. In the last PA design, a novel design methodology for ultra-wide band DPA is presented. The bandwidth limitation factors of the conventional Doherty amplifier are discussed on the ground of broadband matching with impedance variation. To extend the DPA bandwidth, three different methods are used such as post-matching, low impedance transformation ratio and the optimization of offset line for wide bandwidth in the proposed design. The proposed Doherty power amplifier was designed and realized based on two 10 W GaN HEMT devices from Cree Inc. The measured results exhibited 42-57% of efficiency at the 6-dB back-off and saturated output power ranges from 41.5 to 43.1 dBm in the frequency range of 1.15 to 2.35 GHz (68.5% fractional bandwidth). Moreover, less than -25 dBc ACPRs are measured at 42 dBm peak output power throughout the designed band. In a nutshell, all power amplifiers presented in this thesis are suitable for wideband operation and their performances are satisfying the required operational standard. Therefore, this thesis has a significant contribution in the domain of high efficiency and broadband power amplifiers

    Design of 10 to 12 GHz Low Noise Amplifier for Ultrawideband (UWB) Syste

    Get PDF
    Balanced amplifier is the structure proposed in this article, it provides better performance. In fact, the single amplifier meets the specification for noise figure and gain but fails to meet the return loss specification due to the large mis-matches on the input & outputs. To overcome this problem one solution is to use balanced amplifier topography. In this paper, a wide-band and highgain microwave balanced amplifier constituted with branch line coupler circuit is proposed. The amplifier is unconditionally stable in the band [9-13] GHz where the gain is about 20dB. The input reflection (S11) and output return loss (S22) at 11 GHz are -33.4dB and -33.5dB respectively

    3-3.6 GHz Wideband GaN Doherty power amplifier exploiting output compensation stages

    Get PDF
    We discuss the design, realization and experimental characterization of a GaN-based hybrid Doherty power amplifier for wideband operation in the 3-3.6 GHz frequency range. The design adopts a novel, simple approach based on wideband compensator networks. Second-harmonic tuning is exploited for the main amplifier at the upper limit of the frequency band, thus improving gain equalization over the amplifier bandwidth. The realized amplifier is based on a packaged GaN HEMT, and shows, at 6 dB of output power back-off, a drain efficiency higher than 38% in the 3-3.6 GHz band, gain around 10 dB, and maximum power between 43dBm and 44 dBm, with saturated efficiency between 55% and 66 %. With respect to the state of the art, we obtain, at a higher frequency, a wideband amplifier with similar performances in terms of bandwidth, output power, and efficiency, through a simpler approach. Moreover, the measured constant maximum output power of 20W suggests that the power utilization factor of the 10 W (Class A) GaN HEMT is excellent over the amplifier ban

    GaN-based HEMTs for Cryogenic Low-Noise Applications

    Get PDF
    Radio-astronomy deals with signals and radiations of extremely weak intensity. Also, it requires robust and rugged technologies able to sustain and prevent the Radio Frequency Interferences (RFI). Complying with the required high sensitivity, Low Noise Amplifiers (LNAs) operating at cryogenic temperatures are key elements in radio astronomy instrumentation. Thus far, advanced semiconductor technologies but with limited power-handling capabilities have been traditionally employed as LNAs. Over the past decades, Gallium Nitride (GaN)-based high electron mobility transistors (HEMTs) were demonstrated at room temperature to offer a combination of both excellent low-noise operation and a superior high-power handling performance compared to other materials. In addition, a number of studies indicated a promising potential for the GaN technology to operate at cryogenic temperatures. However, the cryogenic noise performance of the GaN-HEMTs remained unexplored so far.This thesis investigates the potential of GaN–based HEMTs for low-noise operation at these cryogenic temperatures. Established characterization and modeling approaches were employed for this purpose. As a main result, this work reveals a first estimation of the noise performance of GaN-HEMTs at cryogenic temperatures of ~10 K which compares to other more advanced technologies in this field. This was achieved through the extraction of a model, based on experimental noise measurements, describing the microwave noise behavior at cryogenic temperatures at the device level. The model predicts the noise contribution of GaN-HEMTs at cryogenic temperatures with respect to the frequency of operation, the dissipated power, and the total periphery of the device. Hence, it constitutes the basis for the design of future GaN-based LNAs which fulfill the different requirements set by the demanding cryogenic applications.The extracted cryogenic noise model was used to identify and analyze the role of the different physical parameters of the device, over which a technological control might be possible in the future in order to improve the assessed noise performance of the cryogenic GaN-HEMTs. From that perspective, GaN-HEMTs featuring superconducting Niobium (Nb)-gates were demonstrated for the first time. The successful integration of superconducting Nb-gates into AlGaN/GaN HEMTs was demonstrated on different samples, showing a suppression of the gate resistance independently of the width and length of the gate below a critical temperature \u1d447\u1d450 < 9.2 K. The superconductivity of the gate leads to the cancellation of the associated noise contribution. Comparing the noise performance of the resulting devices to that of the conventional Gold (Au)-gated GaN-HEMTs, it was concluded that further management of the device’s self-heating is required to enable the full potential of the Nb-gate by maintaining its superconductivity while operating at optimum-noise bias conditions

    Passive and active components development for broadband applications

    Get PDF
    Recently, GaN HEMTs have been proven to have numerous physical properties, resulting in transistors with greatly increased power densities when compared to the other well-established FET technologies. This advancement spurred research and product development towards power-band applications that require both high power and high efficiency over the wide band. Even though the use of multiple narrow band PAs covering the whole band has invariably led to better performance in terms of efficiency and noise, there is an associated increase in cost and in the insertion loss of the switches used to toggle between the different operating bands. The goal, now, of the new technology is to replace the multiple narrow band PAs with one broadband PA that has a comparable efficiency performance. In our study here, we have investigated a variety of wide band power amplifiers, including class AB PAs and their implementation in distributed and feedback PAs.Additionally, our investigation has included switching-mode PAs as they are well-known for achieving a relatively high efficiency. Besides having a higher efficiency, they are also less susceptible to parameter variations and could impose a lower thermal stress on the transistors than the conventional-mode PAs. With GaN HEMTs, we have demonstrated: a higher than 37 dBm output power and a more than 30% drain efficiency over 0.02 to 3 GHz for the distributed power amplifier; a higher than 30 dBm output power with more than a 22% drain efficiency over 0.1 to 5 GHz for the feedback amplifier; and at least a 43 dBm output power with a higher than 63% drain efficiency over 0.05 to 0.55 GHz for the class D PA. In many communication applications, however, achieving both high efficiency and linearity in the PA design is required. Therefore, in our research, we have evaluated several linearization and efficiency enhancement techniques.We selected the LInear amplification with Nonlinear Components (LINC) approach. Highly efficient combiner and novel efficiency enhancement techniques like the power recycling combiner and adaptive bias LINC schemes have been successfully developed and verified to achieve a combined high efficiency with a relatively high linearity

    Cryogenic performance of a 3-14 GHz bipolar SiGe low-noise amplifier

    Get PDF
    The performance of silicon-germanium (SiGe) transistors under cryogenic operation is analysed. The design and characterization of a 3–14 GHz low-noise amplifier (LNA) using SiGe transistors at 300 K and at 13 K are presented. A three stage amplifier is implemented with bipolar transistors model BFU910F from NXP commercially available with a plastic package. The amplifier exhibits 36.8 dB average gain with average noise temperature of 103 K and 42 mW DC power consumption at 300 K ambient temperature. Whereas cooled down to 13 K ambient temperature, it provides 32.4 dB average gain, 11.4 K average noise temperature with a minimum of 7.2 K at 3.5 GHz and a DC power dissipation of 5.8 mW. The presented LNA demonstrates an outstanding performance at cryogenic temperature for a commercial plastic packaged transistor.The authors would like to thank the Spanish Ministry of Economy, Industry and Competitiveness for the financial support provided under the grant ESP2015-70646-C2-2-R
    • …
    corecore