6 research outputs found

    Design and training for combinational neural-logic systems

    Get PDF
    Centre for Multimedia Signal Processing, Department of Electronic and Information Engineering2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Identification of significant factors for air pollution levels using a neural network based knowledge discovery system

    Get PDF
    Artificial neural network (ANN) is a commonly used approach to estimate or forecast air pollution levels, which are usually assessed by the concentrations of air contaminants such as nitrogen dioxide, sulfur dioxide, carbon monoxide, ozone, and suspended particulate matters (PMs) in the atmosphere of the concerned areas. Even through ANN can accurately estimate air pollution levels they are numerical enigmas and unable to provide explicit knowledge of air pollution levels by air pollution factors (e.g. traffic and meteorological factors). This paper proposed a neural network based knowledge discovery system aimed at overcoming this limitation in ANN. The system consists of two units: a) an ANN unit, which is used to estimate the air pollution levels based on relevant air pollution factors; b) a knowledge discovery unit, which is used to extract explicit knowledge from the ANN unit. To demonstrate the practicability of this neural network based knowledge discovery system, numerical data on mass concentrations of PM2.5 and PM1.0, meteorological and traffic data measured near a busy traffic road in Hangzhou city were applied to investigate the air pollution levels and the potential air pollution factors that may impact on the concentrations of these PMs. Results suggest that the proposed neural network based knowledge discovery system can accurately estimate air pollution levels and identify significant factors that have impact on air pollution levels

    A hybrid noise suppression filter for accuracy enhancement of commercial speech recognizers in varying noisy conditions

    Get PDF
    Commercial speech recognizers have made possible many speech control applications such as wheelchair, tone-phone, multifunctional robotic arms and remote controls, for the disabled and paraplegic. However, they have a limitation in common in that recognition errors are likely to be produced when background noise surrounds the spoken command, thereby creating potential dangers for the disabled if recognition errors exist in the control systems. In this paper, a hybrid noise suppression filter is proposed to inter-face with the commercial speech recognizers in order to enhance the recognition accuracy under variant noisy conditions. It intends to decrease the recognition errors when the commercial speech recognizers are working under a noisy environment. It is based on a sigmoid function which can effectively enhance noisy speech using simple computational operations, while a robust estimator based on an adaptive-network-based fuzzy inference system is used to determine the appropriate operational parameters for the sigmoid function in order to produce effective speech enhancement under variant noisy conditions.The proposed hybrid noise suppression filter has the following advantages for commercial speech recognizers: (i) it is not possible to tune the inbuilt parameters on the commercial speech recognizers in order to obtain better accuracy; (ii) existing noise suppression filters are too complicated to be implemented for real-time speech recognition; and (iii) existing sigmoid function based filters can operate only in a single-noisy condition, but not under varying noisy conditions. The performance of the hybrid noise suppression filter was evaluated by interfacing it with a commercial speech recognizer, commonly used in electronic products. Experimental results show that improvement in terms of recognition accuracy and computational time can be achieved by the hybrid noise suppression filter when the commercial recognizer is working under various noisy environments in factories

    Speech Enhancement Strategy for Speech Recognition Microcontroller under Noisy Environments

    Get PDF
    Industrial automation with speech control functions is generally installed with a speech recognition sensor which is used as an interface for users to articulate speech commands. However, recognition errors are likely to be produced when background noise surrounds the command spoken into the speech recognition microcontrollers. In this paper, a speech enhancement strategy is proposed to develop noise suppression filters in order to improve the accuracy of speech recognition microcontrollers. It uses a universal estimator, namely a neural network, to enhance the recognition accuracy of microcontrollers by integrating better signals processed by various noise suppression filters, where a global optimization algorithm, namely an intelligent particle swarm optimization, is used to optimize the inbuilt parameters of the neural network in order to maximize accuracy of speech recognition microcontrollers working within noisy environments. The proposed approach overcomes the limitations of the existing noise suppression filters intended to improve recognition accuracy. The performance of the proposed approach was evaluated by a speech recognition microcontroller, which is used in electronic products with speech control functions. Results show that the accuracy of the speech recognition microcontroller can be improved using the proposed approach, when working under low signal to noise ratio conditions in the industrial environments of automobile engines and factory machines

    Communication and Computation in Buildings: A Short Introduction and Overview

    Full text link

    Design and training for combinational neural-logic systems

    No full text
    This paper presents the combinational neural-logic system. The basic components, i.e., the neural-logic-AND, -OR, and -NOT gates, will be proposed. As different applications have different characteristics, a traditional neural network with a common structure might not handle every application well if some network connections are redundant and cause internal disturbances, which may downgrade the training and network performance. In this paper, the proposed neural-logic gates are the basic building blocks for the applications. Based on the knowledge of the application and the neural-logic design methodology, a combinational neural-logic system can be designed systematically to incorporate the characteristics of the application into the structure of the combinational neural-logic system. It will enhance the training and network performance. The parameters of the combinational neural-logic system will be trained by the genetic algorithm. To illustrate the merits of the proposed approach, the combinational neural-logic system will be realized practically to recognize Cantonese speech commands for an electronic book.Department of Electronic and Information EngineeringCentre for Multimedia Signal Processing, Department of Electronic and Information Engineerin
    corecore