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Design and Training for Combinational
Neural-Logic Systems

H. K. Lam, Member, IEEE, and Frank H. F. Leung, Senior Member, IEEE

Abstract—This paper presents the combinational neural-logic
system. The basic components, i.e., the neural-logic-AND, -OR, and
-NOT gates, will be proposed. As different applications have differ-
ent characteristics, a traditional neural network with a common
structure might not handle every application well if some network
connections are redundant and cause internal disturbances, which
may downgrade the training and network performance. In this pa-
per, the proposed neural-logic gates are the basic building blocks
for the applications. Based on the knowledge of the application and
the neural-logic design methodology, a combinational neural-logic
system can be designed systematically to incorporate the charac-
teristics of the application into the structure of the combinational
neural-logic system. It will enhance the training and network
performance. The parameters of the combinational neural-logic
system will be trained by the genetic algorithm. To illustrate the
merits of the proposed approach, the combinational neural-logic
system will be realized practically to recognize Cantonese speech
commands for an electronic book.

Index Terms—Cantonese speech recognition, combinational
neural-logic system, neural network.

I. INTRODUCTION

N EURAL networks [1], [2] are useful tools for many
applications due to its powerful approximation ability. A

neural network was proved to be able to serve as a universal
approximator for any continuous nonlinear function in a com-
pact domain [1], [2]. A three-layer fully connected feedforward
neural network can approximate any nonlinear continuous func-
tion to an arbitrary accuracy in a compact domain. To obtain the
network structure automatically, constructive and destructive
algorithms can be used [3]. A constructive algorithm starts with
a small network. Hidden layers, nodes, and connections are
added to expand the network dynamically [4]. A destructive
algorithm starts with a large network. Hidden layers, nodes,
and connections are then removed to contract the network
dynamically [3]. In [6], by introducing switches into the links
of the neural network, the network structure can be tuned by
the genetic algorithm (GA) [5]. One of the implications behind
these algorithms is that different structures of neural networks
are needed for different tasks of different characteristics. Hence,
the neural network should be designed based on the character-
istic of the task to provide good performance.
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To implement a given binary logic function, a combinational
logic circuit consisting of three basic logic gates (AND, OR, and
NOT gates) can be designed in a very systematic and efficient
way. The designed combinational logic circuit is guaranteed to
have the simplest form. By extending this idea to a neural sys-
tem, the binary logic function is analogous to the input–output
relation of the system. Similar ideas using fuzzy gates have
been proposed in [7]. In [8], a fuzzy microprocessor was pre-
sented and constructed. In [9] and [10], some analogical gates
that are obtained from fuzzy generalization of Boolean logical
gates were proposed. These analogical gates have been em-
ployed in the control of nonholonomic mobile robots [9], [10]
and the synthesis of multicomponent separation processes [11].
However, a systematic design procedure was not provided. The
concept of fuzzy J-K flip-flops was proposed in [12]. The binary
flip-flops were extended to fuzzy flip-flops using t-norms,
s-norms, and fuzzy negation defined by the fuzzy set theory. A
family of fuzzy J-K flip-flops using different t-norms, s-norms,
and fuzzy negation was investigated in [13]. However, no
industrial applications were mentioned using these fuzzy flip-
flops. In [14] and [15], a weight-added fuzzy flip-flop with
learning ability was proposed. A learning algorithm like the
backpropagation algorithm was also proposed for this flip-flop.

Traditionally, neural networks with the same structure were
applied to handle different applications. Owing to the different
characteristics of applications, neural networks with the same
structure might not give the optimal solution. Some of the
connections and weights could be redundant, which makes
the number of the network parameters unnecessarily large.
Furthermore, these redundant connections may cause internal
disturbances [3], [16] that downgrade the training and network
performance. The traditional neural network approach is good
in handling applications without too much information. Prac-
tically, engineers should be able to collect some information
from the real-world applications. This information provides
some important knowledge to tell the characteristics of the
application. In this paper, some novel basic building blocks,
namely neural-logic-AND, -OR, and -NOT gates, are proposed.
By extending the binary logic design algorithm, a combina-
tional neural-logic system can be designed systematically to
incorporate the characteristics of the application to the network
structure so as to enhance the training and network perfor-
mance. Furthermore, the structure should be simpler as com-
pared with that of the traditional neural network because some
redundant connections are removed. A combinational neural-
logic system thus designed is dedicated to the application.

GA is a directed random search technique [5] that is widely
applied in optimization problems to find out the optimal
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Fig. 1. Block diagram of a neural-logic gate.

solution globally over a domain. It is especially useful for com-
plex optimization problems where the number of parameters
is large and the analytical solutions are difficult to obtain. In
this paper, GA is employed to train the parameter values of the
combinational neural-logic systems. As the training of GA is
based on the input–output data only, the derivative information
of the cost function need not be known. This feature makes
GA suitable for the combinational neural-logic systems, which
have different structures for different applications. It is because
if the training algorithm (e.g., gradient-descent algorithms)
depends on some derivative information of the cost function,
the updating rule is needed to be derived each time for each
different network structure. Nevertheless, it should be noted
that other training algorithms can possibly be used to carry out
the training.

This paper is organized as follows. The neural-logic gates
will be presented in Section II. The design and learning of
the combination neural-logic system will be presented in
Section III. As an example, Cantonese speech commands
recognized by the proposed combinational neural-logic system
will be given in Section IV. A conclusion will be drawn in
Section V.

II. NEURAL-LOGIC GATES

In this paper, the proposed neural-logic gates consist of
five parts, namely: 1) neural-logic operation; 2) rule base;
3) processing function; 4) neural network; and 5) combination
function, as shown in Fig. 1. First, the inputs of the neural-
logic gate will undergo a neural-logic operation, which will
be discussed later. Its output will be passed to the rule base,
which stores the boundary conditions and the properties of
the neural-logic gates. The processing function and the neural
network introduce the nonlinearity to the neural-logic gates
for error correction. The output of the neural-logic gate is the
combination of the outputs of the rule base and the neural
network.

A. Neural-Logic-AND Gate

A two-input–single-output neural-logic-AND gate is pro-
posed. The inputs and output lie between 0 and 1 inclusively.
Referring to Fig. 1, the neural-logic-AND operation is defined as

x1(t) ⊗ x2(t) = 0 ∨ (x1(t) + x2(t) − 1) ∈ [0 1] (1)

which is actually the bounded product [12] of the inputs x1(t)
and x2(t), where t denotes the current number of input vector,
which is a nonzero integer, and ∨ denotes the maximum oper-
ator. The output of the neural-logic-AND operation will be fed

TABLE I
BOUNDARY CONDITIONS AND PROPERTIES OF

THE NEURAL-LOGIC-AND GATES

to the rule base, which guarantees the boundary conditions and
properties of a binary AND gate as shown in Table I. Throughout
this paper, the neural-logic-AND operator is denoted by a “◦,”
e.g., x1(t) AND x2(t) is written as x1(t) ◦ x2(t).

For the neural network in Fig. 1, a three-layer fully con-
nected feedforward neural network is employed. Before feed-
ing the input signals to the neural network, the input signals
x1(t) and x2(t) will be processed by a processing function
h(·), which is to be designed. The purpose of introducing
the processing function h(·) is to transform the inputs to a
desirable domain to facilitate the subsequent processes. For
the neural network, x(t) = [x1(t) x2(t) · · · xnin(t)] de-
notes the input vector; nin denotes the number of input nodes
(nin = 2 for a two-input–single-output neural-logic-AND gate);
w1

ij , i = 1, 2, . . . , nh, j = 1, 2, . . . , nin, denote the connection
weights between the input layer and the hidden layer; nh de-
notes the number of hidden nodes; w2

ki, k = 1, 2, . . . , nout, i =
1, 2, . . . , nh, denote the connection weights between the hidden
layer and the output layer; nout denotes the number of output
nodes (nout = 1 for a two-input–single-output neural-logic-
AND gate); b1

i , i = 1, 2, . . . , nh, and b2
k, k = 1, 2, . . . , nout,

denote the bias weights to the ith hidden and kth output nodes,
respectively; t1f (·) and t2f (·) denote the activation functions
of the hidden and output layers, respectively; and g(t) =
[g1(t)] g2(t) · · · gnout(t)] denotes the output vector. The
output of the neural network is defined as

gk(t) = t2f

(
nh∑
i=1

t1f
(
h (x(t))wi + b1

i

)
w2

ki

)
+ b2

k,

k = 1, 2, . . . , nout (2)

where wi = [w1
i1 w1

i2 · · · w1
inin

]T . The parameters w1
ij ,

w2
ki, b1

i , and b2
k, which form genes of the chromosome, will

be tuned by the real-coded GA with arithmetic crossover and
nonuniform mutation [5]. The total number of parameters for
each neural network is (nin + 1)nh + (nh + 1)nout. As the
neural-logic-AND gate has two inputs and one output, from (2),
the input–output relationship of the neural network inside the
neural-logic-AND gate is defined as

g1(t) = t2f

(
nh∑
i=1

t1f
(
h (x(t))wi + b1

i

)
w2

1i

)
+ b2

1. (3)

Consequently, the output of the neural-logic-AND gate is
defined as

yAND(t) = (0 ∨ fAND (x1(t) ⊗ x2(t), g1(t))) ∧ 1 (4)

subject to the properties of Table I. The symbol ∧ denotes
the minimum operator. fAND(·) is the combination function
of the neural-logic-AND gate to be designed. The proposed
neural-logic-AND gate satisfies the boundary conditions and
exhibits the properties of the binary AND gate.
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TABLE II
BOUNDARY CONDITIONS AND PROPERTIES OF

THE NEURAL-LOGIC-OR GATES

B. Neural-Logic-OR Gate

A two-input–single-output neural-logic-OR gate is proposed.
The inputs and output lie between 0 and 1 inclusively. Referring
to Fig. 1, the neural-logic-OR operation is defined as

x1(t) ⊕ x2(t) = (x1(t) + x2(t)) ∧ 1 ∈ [0 1] (5)

which is actually the bounded sum [12] of the inputs x1(t) and
x2(t). The output of the neural-logic-OR operation will be fed to
the rule base, which guarantees the boundary conditions and the
properties of a binary OR gate as shown in Table II. Throughout
this paper, the neural-logic-OR operator is denoted by a “•,”
e.g., x1(t) OR x2(t) is written as x1(t) • x2(t). The neural
network of the neural-logic-OR gate is the same as that of the
neural-logic-AND gate. It should be noted that the parameters of
the neural network for each individual logic gate are not shared.
The output of the neural-logic-OR gate is defined as

yOR(t) = (0 ∨ fOR (x1(t) ⊕ x2(t), g1(t))) ∧ 1 (6)

subject to the properties of Table II. fOR(·) is the combina-
tion function of the neural-logic-OR gate to be designed. The
proposed neural-logic-OR gate satisfies the boundary conditions
and exhibits the properties of the binary OR gate.

C. Neural-Logic-NOT Gate

The neural-logic-NOT gate has one input and one output. The
output of the neural-logic-NOT gate is defined as

yNOT(t) ∈ [0 1] = 1 − x(t). (7)

It can be seen from (7) that the characteristics of a binary
logic NOT gate are retained, i.e., NOT 0 = 1 and NOT 1 = 0.
The neural-logic-NOT operator is denoted by a “bar,” e.g., NOT

x1(t) is written as x1(t).

III. DESIGN AND LEARNING OF COMBINATIONAL

NEURAL-LOGIC SYSTEMS

In this section, the design and the learning of the combina-
tional neural-logic system will be presented.

A. Design

The design of the combinational neural-logic system, which
is formed by some neural-logic-AND, -OR, and -NOT gates, will
be considered. Fig. 2 shows the block diagram of a multiple-
input–multiple-output combinational neural-logic system. The
inputs are denoted by z1, z2, . . . , zni

, where ni denotes the
number of inputs. The outputs are denoted by y1, y2, . . . , yno

,
where no denotes the number of outputs. The multiple-
input–multiple-output combinational neural-logic system con-
sists of three parts, namely 1) normalizer, 2) combinational

Fig. 2. Block diagram of a combinational neural-logic system.

TABLE III
TRUTH TABLE

neural-logic circuit, and 3) denormalizer. As the inputs of the
defined neural-logic gates take values between 0 and 1, the
normalizer is used to normalize the values of the actual inputs to
values inside this range. Similarly, as the outputs of the defined
neural-logic gates take values between 0 and 1, the denormal-
izer is used to map the values of the outputs of the combi-
national neural-logic circuit to the actual output ranges. The
combinational neural-logic circuit is to implement a given
neural-logic function (i.e., input–output relation). The (nor-
malized) inputs and outputs of the combinational neural-
logic circuit are denoted by ẑ1, ẑ2, . . . , ẑni

and ŷ1, ŷ2, . . . , ŷno
,

respectively.
We illustrate the design of the combinational neural-logic

circuit using an example. We learn the input–output relationship
of an unknown function based on its input–output data pairs.
First, we have to set up a truth table based on some expert
knowledge. The truth table governs the relations among some
linguistic states [e.g., high (H) and low (L)]. It should be noted
that H and L are linguistic variables, which are different from
those in binary logic systems. H and L in binary logic systems
refer to crisps 1 and 0, respectively. In the combinational neural-
logic system, H and L refer to a state, which is about 1 and 0,
respectively. If a combinational neural-logic circuit have two
inputs (ẑ1 and ẑ2,) and one output (ŷ1), and the two linguistic
states for each variable are H and L, a truth table for the circuit
can be given by Table III. These two linguistic states divide the
input region (0 to 1) into two subregions. Taking the first rule
(row 2 of Table III) as an example, it can be interpreted that if
ẑ1 is about L and ẑ2 is about L, then ŷ1 is about H. These rules
are determined based on human knowledge about the problem
to be handled.

Based on the truth table, a combinational neural-logic circuit
can be designed. With reference to the state H, taking ẑ1

for example, ẑ1 and ¯̂z1(· denotes the neural-logic NOT of an
argument) mean that ẑ1 is about H and ẑ1 is about L in the
neural-logic function, respectively (the same notations as those
in a binary logic system). Referring to the properties of neural-
logic gates tabulated in Tables I and II, the output ŷ1 can be
obtained through a few steps of linear algebra manipulations as
follows:

ŷ1 =
(¯̂z1 ◦ ¯̂z2

) • (¯̂z1 ◦ ẑ2

) • (ẑ1 ◦ ¯̂z2

)
. (8)
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Fig. 3. K-map.

Similar to the binary logic systems, ¯̂z1 ◦ ¯̂z2, ¯̂z1 ◦ ẑ2, ẑ1 ◦ ¯̂z2,
and ẑ1 ◦ ẑ2 are called the minterms of the neural-logic function.
Based on the properties in Tables I and II, (8) can be rewritten as

ŷ1 =
(¯̂z1 ◦ ¯̂z2

) • (¯̂z1 ◦ ¯̂z2

) • (¯̂z1 ◦ ẑ2

) • (ẑ1 ◦ ¯̂z2

)
(by making use of the property that A • A = A)

=
(¯̂z1 ◦

(¯̂z2 • ẑ2

)) • ((¯̂z1 • ẑ1

) ◦ ¯̂z2

)
= ¯̂z1 • ¯̂z2. (9)

It should be noted that the neural-logic function is in min-
imal form and can also be obtained using Karnaugh map
(K-map) [17] or other methods. The K-map for obtaining (9)
is shown in Fig. 3. The above example illustrates the idea
of designing a two-input–single-output combinational neural-
logic system. The idea can readily be extended to design a
multiple-input–multiple-output combinational neural-logic sys-
tem. In summary, we have illustrated an algorithm to simplify
the structure of a combinational neural-logic system based on
some expert knowledge.

B. Learning

In this paper, the real-coded GA with arithmetic crossover
and nonuniform mutation [5] will be employed to find a set of
parameters of the combinational neural-logic system to achieve
a given task. To do so, a fitness function that reveals the system
performance is needed to be defined, i.e.,

fitness = f(β) (10)

where f(·) is a function measuring the system performance
(which is to be designed according to the task), β is a vector
(chromosome) containing all the parameters (genes) of the
combinational neural-logic system, e.g., the parameters w1

ij ,
w2

ki, b1
i , and b2

k of each neural-logic gate. The objective is
to maximize the value of fitness by adjusting β using GA.
Usually, the value of fitness is normalized to be between 0 and 1
inclusively. The higher the value of fitness, the better is the
system performance.

IV. APPLICATION EXAMPLE

An application example on Cantonese speech command
recognition will be given in this section to illustrate the de-
sign procedure and merits of the proposed approach. The
proposed combinational neural-logic system is employed to

Fig. 4. Block diagram of the five-Cantonese-speech-command recognition
process.

perform the recognition. It will be designed based on expert
knowledge on the task to be handled. Real-coded GA [5] will
be employed to learn the network parameters. The proposed
Cantonese speech command recognizer implemented by the
combinational neural-logic system has been successfully im-
plemented in an electronic book reader [19], which has a micro-
phone for capturing the speech signals. Five Cantonese words

(five classes), namely /soeng5/ ( ), /haa5/ ( ), /bat1/ ( ),
/daai6/ ( ), and /zyu3/ ( ) [18], are used to activate the “page
up,” “page down,” “pen,” “zoom in,” and “bookmark” actions
in the electronic book reader.

A. Feature Coefficient Extraction

Fig. 4 shows the block diagram of the Cantonese speech
recognition process. First, speech signals are recorded from a
microphone in mono pulse-code modulation format at an 8-bit,
11-kHz sampling rate. The speech signals in time domain, with
windowing by the hamming windows, are transformed into
frequency-domain components using fast Fourier transform. A
uniform filter bank is applied to model the frequency spectrum
of the speech signal. The process of retrieving the feature
coefficients from the uniform filter bank is defined as follows:

coα
=

10 log
m∑

i=1

sαi

m
, α = 1, 2, . . . , k (11)

where coα
denotes the mean power spectrum of the speech

in the αth bandpass filter, k denotes the number of bandpass
filters, m denotes the number of the frequency components
at each bandpass filter, and sαi denotes the amplitude of ith
frequency component at the αth bandpass filter. The difference
between coα

is defined as follows:

doα+1 = coα+1 − coα
, α = 1, 2, . . . , k − 1 (12)

do1 = co1 . (13)

To reduce the number of inputs of the combinational neural-
logic system, the following equations [(14) and (15)] are used
to reduce the number of feature parameters by half:

poς
=

doς
+ doς+1

2
, ς = 1, 2, . . . , ρ − 1 (14)

where ρ denotes the number of feature coefficients obtained
from the filter-bank filter. The feature coefficient used by the
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Fig. 5. Averaged values of ci.

proposed network is defined as

ci =
Poo + Poe

2
(15)

where Poo and Poe denotes the odd and even elements of po =
[po1 po2 · · · poρ−1 ], respectively. Referring to Fig. 4, the
outputs of the feature extractor will be used as the inputs
of the combinational neural-logic system, which is employed
to classify the input speech commands. The inputs of the
combinational neural-logic system are defined as z = ci/‖ci‖,
where ci = �ci1 ci2 · · · ci(k−1)/2�, ‖·‖ denotes the l2 vec-
tor norm. In this paper, the number of bandpass filters is 11.
Hence, from (14) and (15), the number of elements of the
augmented feature coefficient vector ci, which are taken as
the inputs of the combinational neural-logic system, is five. As
there are five commands to be recognized, the combinational
neural-logic system will have five outputs. The output with the
maximum value indicates the possible input speech command.
In the following, the combinational neural-logic system will be
designed.

B. Normalizer

Referring to Fig. 2, the normalizer is defined as follows:

ẑ =
1

1 + e
−(z−0.45)
2(0.025)2

∈ [0 1] (16)

where z denotes the input vector of the normalizer. The function
of (16) spans the inputs all over the positive domain with the
values lying between 0 and 1.

C. Combinational Neural-Logic Circuit

To design the combinational neural-logic system, a truth
table should be constructed first. Fig. 5 shows the plot of the
averaged ci values of 100 patterns for each speech commands.
For a value greater than 0.6, it takes the logic H condition. For
a value smaller than 0.4, it takes the logic L condition. For

a value around 0.5 (arbitrarily set between 0.4 and 0.6), it
takes a don’t-care condition (X). The ith output ŷi will take the
logic H when the inputs are the corresponding ith Cantonese
speech command (the order of the Cantonese speech commands

are /soeng5/ ( ), /haa5/ ( ), /bat1/ ( ), /daai6/ ( ), and
/zyu3/ ( ), characterized by i = 1, 2, 3, 4, and 5, respectively.)
For instance, referring to Fig. 5, the five coefficients ci of
the Cantonese speech command /soeng5/ ( ) take the logic
values of HHXXL. Its corresponding output ŷ1 should take
the logic condition H, whereas the logic conditions of other
outputs should be L except those Cantonese speech commands
that share the same input logic conditions. For the exceptional
cases, the outputs will take the logic condition of “don’t care.”
The truth table for the Cantonese speech commands is shown
in Table IV. Taking the positive logic and with the help of
Table IV and the K-map, the following output logic expressions
can be obtained:

ŷ1 = ẑ1 ◦ ẑ2 ◦ ¯̂z5 (17)

ŷ2 = ẑ3 ◦ ẑ4 ◦ ¯̂z5 (18)

ŷ3 = ẑ1 ◦ ẑ4 ◦ ¯̂z5 (19)

ŷ4 = ẑ3 ◦ ¯̂z5 (20)

ŷ5 = ¯̂z3 ◦ ¯̂z5. (21)

The combinational neural-logic circuit is shown in Fig. 6.
The processing functions and the combination functions for all
neural-logic gates are defined as follows:

h(x) =
2x − 1

2
∈ [−1 1] (22)

fAND(v1, v2) = fOR(v1, v2) = logsig(v1 + v2) (23)

where x = [x1 x2] denotes the inputs of the neural-logic
gates. Referring to (22) and (23), the defined functions are to
map their inputs to be in the range of −1 to 1. Other functions
could be used to serve the same purpose. In this application,
they are chosen experimentally to produce a satisfactory result.
Referring to Fig. 1, v1 and v2 denote the outputs of the rule
base and neural network of the neural-logic gates, respectively;
logsig(u) = 1/1 + e−u, where u is a scalar, denotes the log-
arithmic sigmoid function. In this paper, the hidden node and
output node transfer functions of the neural network of the
neural-logic gates are the logarithmic sigmoid function and
linear function, respectively. The linear function is defined as
a function of which the inputs equal the outputs.

D. Denormalizer

The denormalizer is defined as follows:

y =
ȳ
‖ȳ‖ ∈ [0 1]. (24)

The function of (24) is to emphasize the largest value and
suppress the small values of y. The index of the element
of y having the maximum value indicates the possible input
Cantonese speech.
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TABLE IV
TRUTH TABLE FOR CANTONESE SPEECH COMMANDS

Fig. 6. Combinational neural-logic circuit for Cantonese speech command
recognition.

E. Training of Combinational Neural-Logic System Using GA

After the design of the combinational neural-logic system
for Cantonese speech command recognition, its parameters will
be optimized by the real-coded GA with arithmetic crossover
and nonuniform mutation [5]. The details of the training are
as follows: For the GA training process, the following fitness
function is defined:

fitness =
1

1 + err
(25)

where err denotes the mean square error, i.e.,

err =

100∑
t=1

∥∥yd(t) − y(t)
∥∥2

5 × 100
(26)

with yd(t) = [yd
1(t) yd

2(t) yd
3(t) yd

4(t) yd
5(t)] denoting

the desired output vector for the tth input vector. The objective
is to maximize the fitness value. It should be noted that only

one yi is equal to 1 and the rest are all zero. For instance, when
the input vector belongs to class 1, the corresponding output
yd(t) = [1 0 0 0 0]; when the input vector belongs to
class 2, the corresponding output yd(t) = [0 1 0 0 0];
and so on. As there are 500 training patterns (100 train-
ing patterns for each class) for training, the desired output
vector for the first 100 training patterns will be yd(t) =
[1 0 0 0 0]. For the second to fifth 100 training patterns,
yd(t)=[0 1 0 0 0], [0 0 1 0 0], [0 0 0 1 0],
and [0 0 0 0 1], respectively. All the parameters of the
neural networks of the neural-logic gates will be taken as the
genes to form the chromosome for the GA process.

The control parameters of the real-coded GA with arithmetic
crossover and nonuniform mutation [5] are as follows: The
probability of crossover is 0.8, the probability of mutation is
0.025, the shape parameter is 1, the population size is 40,
and the number of training iteration is 2000. The GA training
process will run for 30 times. Different numbers of hidden
nodes for the neural network of the neural-logic gates are tried
(three, five, eight, and 12 hidden nodes.) The lower and upper
bounds of all parameters are −10 and 10, respectively. The best
set of parameters among the 30 runs will be employed to imple-
ment the Cantonese speech command recognizer. The statistical
results of the training are shown in Table V. It should be noted
that the best set of parameters refers to the parameters that give
the maximum fitness value among the 30 runs. In the follow-
ing, the best trained combinational neural-logic system/neural
network refers to that employing the best set of parameters.

F. Testing of the Trained Combinational Neural Network
Logic System

One hundred fifty testing patterns (30 patterns for each
Cantonese speech commands) are employed to test the recog-
nition ability of the best trained combinational neural-logic
system among the 30 runs. The testing fitness of the best
trained combinational neural-logic system and the recognition
accuracy under different numbers of hidden nodes are tabulated
in Tables V and VI, respectively. From these two tables, it can
be seen that the training and testing fitness values are higher
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TABLE V
STATISTICAL TRAINING AND TESTING RESULTS OF THE COMBINATIONAL NEURAL-LOGIC SYSTEM. THE LEFT AND

THE RIGHT VALUES ARE FOR THE TRAINING AND TESTING PATTERNS, RESPECTIVELY

TABLE VI
RECOGNITION ACCURACY (IN PERCENT) OF THE BEST TRAINED COMBINATIONAL NEURAL-LOGIC SYSTEM

TABLE VII
STATISTICAL TRAINING AND TESTING RESULTS OF THE TRADITIONAL THREE-LAYER FULLY CONNECTED FEEDFORWARD NEURAL NETWORK.

THE LEFT AND THE RIGHT VALUES ARE FOR THE TRAINING AND TESTING PATTERNS, RESPECTIVELY

TABLE VIII
RECOGNITION ACCURACY (IN PERCENT) OF THE BEST TRAINED TRADITIONAL THREE-LAYER FULLY CONNECTED FEEDFORWARD NEURAL NETWORK

for a larger number of hidden nodes. The training fitness values
under different numbers of hidden nodes are all slightly higher
than the testing fitness values. Similarly, the recognition is more
accurate for a larger number of hidden nodes. On average, the
recognition rate for each Cantonese speech command is over
90% for both training and testing under different numbers of
hidden nodes.

G. Comparison

For comparison, a traditional three-layer fully connected
feedforward neural network of (2) with five inputs and five
outputs will be employed to implement the Cantonese speech
recognizer. The input training and testing patterns of the tra-
ditional neural network are defined as (2z − 1)/2 where z is
the input patterns of the combinational neural-logic system.
The desired training and testing output patterns are the same
as those of the combinational neural-logic system. The real-

coded GA with arithmetic crossover and nonuniform mutation
is employed to train the parameters of the neural networks. For
the GA process, the training environment is the same as that of
the combinational neural-logic system. The training will also
go through 30 times. To have a similar number of parameters
to that of the combinational neural-logic system, the numbers
of hidden nodes of the traditional neural network are chosen to
be four, six, ten, and 14. Tables VII and VIII summarize the
statistical training and testing results, as well as the recognition
accuracy of the best trained traditional three-layer feedforward
neural network.

From Tables V and VII, it can be seen that the fitness values
of both approaches for the training and testing patterns are
more or less the same. However, the proposed combinational
neural-logic system exhibits more consistent training results
as revealed by the standard deviation values. From Tables VI
and VIII, it can be seen that the proposed combinational
neural-logic system gives more accurate recognition results
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with the lowest recognition rate of 93.3333% for /haa5/ ( ),

/bat1/ ( ), and /daai6/ ( ) and the highest recognition rate of
100% for /soeng5/ ( ) and /zyu3/ ( ). The traditional neural
network approach gives recognition results with the lowest
recognition rate of 83.3333% for /daai6/ ( ). Referring to these
tables, the combinational neural-logic system with the least
number of network parameters performs better than that of the
traditional neural network with different numbers of parameters
in terms of recognition accuracy. These results illustrate the
effective training and network performance provided by the
proposed approach. Furthermore, a smaller network implies a
simpler network structure.

V. CONCLUSION

The neural-logic-AND, -OR, and -NOT gates, which form the
basic components of the proposed combinational neural-logic
system, have been proposed. By constructing a truth table based
on the knowledge of an application and with the help of K-map,
the combinational neural-logic system formed by the neural-
logic gates can be designed systematically to incorporate the
characteristics of the application into the network structure to
enhance the training and network performance. To show the
merits of the proposed approach, a Cantonese speech recog-
nizer has been implemented using the combinational neural-
logic system.
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