750 research outputs found

    Cyber-Physical Production Testbed: Literature Review and Concept Development

    Get PDF
    Many researchers use virtual and simulation-based testbed technology for research in production and maintenance optimization. Although, the virtual environment produces good results, it cannot imitate the unexpected changes that occur in actual production. There are very few physical testbeds emulating actual production environment. The aim of this paper is to present a concept of a cyber-physical production testbed based on review of Cyber-Physical Systems (CPS) testbeds in research. The testbed consists of a semi-automatic production line equipped with system monitoring tools, data analysis capabilities and commercial software. This testbed will be used for demonstration of data acquisition for production and maintenance prioritization. Additionally, the testbed will be used for research in IoT platforms for production optimization

    PhyNetLab: An IoT-Based Warehouse Testbed

    Full text link
    Future warehouses will be made of modular embedded entities with communication ability and energy aware operation attached to the traditional materials handling and warehousing objects. This advancement is mainly to fulfill the flexibility and scalability needs of the emerging warehouses. However, it leads to a new layer of complexity during development and evaluation of such systems due to the multidisciplinarity in logistics, embedded systems, and wireless communications. Although each discipline provides theoretical approaches and simulations for these tasks, many issues are often discovered in a real deployment of the full system. In this paper we introduce PhyNetLab as a real scale warehouse testbed made of cyber physical objects (PhyNodes) developed for this type of application. The presented platform provides a possibility to check the industrial requirement of an IoT-based warehouse in addition to the typical wireless sensor networks tests. We describe the hardware and software components of the nodes in addition to the overall structure of the testbed. Finally, we will demonstrate the advantages of the testbed by evaluating the performance of the ETSI compliant radio channel access procedure for an IoT warehouse

    A Survey on Facilities for Experimental Internet of Things Research

    Get PDF
    International audienceThe initial vision of the Internet of Things (IoT) was of a world in which all physical objects are tagged and uniquelly identified by RFID transponders. However, the concept has grown into multiple dimensions, encompassing sensor networks able to provide real-world intelligence and goal-oriented collaboration of distributed smart objects via local networks or global interconnections such as the Internet. Despite significant technological advances, difficulties associated with the evaluation of IoT solutions under realistic conditions, in real world experimental deployments still hamper their maturation and significant roll out. In this article we identify requirements for the next generation of the IoT experimental facilities. While providing a taxonomy, we also survey currently available research testbeds, identify existing gaps and suggest new directions based on experience from recent efforts in this field

    Design of Platforms for Experimentation in Industrial Cybersecurity

    Get PDF
    [EN] The connectivity advances in industrial control systems have also increased the possibility of cyberattacks in industry. Thus, security becomes crucial in critical infrastructures, whose services are considered essential in fields such as manufacturing, energy or public health. Although theoretical and formal approaches are often proposed to advance in the field of industrial cybersecurity, more experimental efforts in realistic scenarios are needed to understand the impact of incidents, assess security technologies or provide training. In this paper, an approach for cybersecurity experimentation is proposed for several industrial areas. Aiming at a high degree of flexibility, the Critical Infrastructure Cybersecurity Laboratory (CICLab) is designed to integrate both real physical equipment with computing and networking infrastructure. It provides a platform for performing security experiments in control systems of diverse sectors such as industry, energy and building management. They allow researchers to perform security experimentation in realistic environments using a wide variety of technologies that are common in these control systems, as well as in the protection or security analysis of industrial networks. Furthermore, educational developments can be made to meet the growing demand of security-related professionals.SIMinisterio de Economía y Competitividad Spain UNLE13-3E-157

    On the Road to 6G: Visions, Requirements, Key Technologies and Testbeds

    Get PDF
    Fifth generation (5G) mobile communication systems have entered the stage of commercial development, providing users with new services and improved user experiences as well as offering a host of novel opportunities to various industries. However, 5G still faces many challenges. To address these challenges, international industrial, academic, and standards organizations have commenced research on sixth generation (6G) wireless communication systems. A series of white papers and survey papers have been published, which aim to define 6G in terms of requirements, application scenarios, key technologies, etc. Although ITU-R has been working on the 6G vision and it is expected to reach a consensus on what 6G will be by mid-2023, the related global discussions are still wide open and the existing literature has identified numerous open issues. This paper first provides a comprehensive portrayal of the 6G vision, technical requirements, and application scenarios, covering the current common understanding of 6G. Then, a critical appraisal of the 6G network architecture and key technologies is presented. Furthermore, existing testbeds and advanced 6G verification platforms are detailed for the first time. In addition, future research directions and open challenges are identified for stimulating the on-going global debate. Finally, lessons learned to date concerning 6G networks are discussed

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems
    corecore