6 research outputs found

    Design and Implementation of a Testbed for IEEE 802.15.4 (Zigbee) Performance Measurements

    Get PDF
    IEEE 802.15.4, commonly known as ZigBee, is a Media Access Control (MAC) and physical layer standard specifically designed for short range wireless communication where low rate, low power, and low bandwidth are required. This makes ZigBee an ideal choice when it comes to sensor networks for monitoring data collection and/or triggering process responses. However, these very characteristics bring into question ZigBee\u27s ability to perform reliably in harsh environments. This paper thoroughly explains the experimental testbed setup and execution to demonstrate ZigBee\u27s performance in several practical applications. This testbed is capable of measuring the minimum, maximum, and average received signal strength indicator (RSSI), bit error rate (BER), packet error rate (PER), packet loss rate (PLR), and the bit error locations. Results show that ZigBee has the potential capabilities to be used in all four tested environments

    Cyclist training monitoring system based on wireless sensor network

    Get PDF
    Recent innovation of technology in wireless sensor network (WSN) has eased the deployment of WSN in many applications such as health monitoring system. This research presents a cyclist training monitoring system that is equipped with a set of sensors using the WSN technology. This enables continuous monitoring process of cyclist training that can be done anytime and anywhere. A stable and reliable wireless cyclist monitoring system with minimum data loss is vital to establish a smart and efficient sports management program that can lead to better quality outcomes of cyclist training. This cyclist training monitoring system has been developed and tested in real cyclist training environment in velodrome. The system is designed based on WSN that is linked to the cloud network on the Internet. Using TelG node as the basis, customized transceiver nodes are developed to establish the WSN. These nodes have been built with 30% reduction in size from the existing nodes. Seven measurements were conducted to investigate several factors that affect the packet loss rate before the system architecture was constructed. The factors that were taken into account during the measurements are the distance between the transmitter and the receiver, the height and angle of the receiver, the mobility of the transmitter, the transmission power of the transmitter, as well as the packet size and transmission rate. The results from the measurements correspond to the wireless communication theory. Based on the seven measurements, the system architecture was constructed. Several experiments were conducted in a real scenario in velodrome to measure the reliability of the system architecture. It was shown from the experiments that the proposed system is reliable even when the cyclist is moving at high speed which is 30km/h constantly. The packet loss in all experiments conducted is less than 2%, which does not give huge impact to the sensor data transmission. In addition, the results have shown that the proposed system can produce minimum end-to-end delay which is at 11ms when packet size is below 20 bytes which can be neglected

    A holistic approach to ZigBee performance enhancement for home automation networks

    Get PDF
    Wireless home automation networks are gaining importance for smart homes. In this ambit, ZigBee networks play an important role. The ZigBee specification defines a default set of protocol stack parameters and mechanisms that is further refined by the ZigBee Home Automation application profile. In a holistic approach, we analyze how the network performance is affected with the tuning of parameters and mechanisms across multiple layers of the ZigBee protocol stack and investigate possible performance gains by implementing and testing alternative settings. The evaluations are carried out in a testbed of 57 TelosB motes. The results show that considerable performance improvements can be achieved by using alternative protocol stack configurations. From these results, we derive two improved protocol stack configurations for ZigBee wireless home automation networks that are validated in various network scenarios. In our experiments, these improved configurations yield a relative packet delivery ratio increase of up to 33.6%, a delay decrease of up to 66.6% and an improvement of the energy efficiency for battery powered devices of up to 48.7%, obtainable without incurring any overhead to the network.Postprint (published version

    Design and Implementation of a Testbed for IEEE 802.15.4 (Zigbee) Performance Measurements

    Get PDF
    IEEE 802.15.4, commonly known as ZigBee, is a Media Access Control (MAC) and physical layer standard specifically designed for short range wireless communication where low rate, low power, and low bandwidth are required. This makes ZigBee an ideal choice when it comes to sensor networks for monitoring data collection and/or triggering process responses. However, these very characteristics bring into question ZigBee's ability to perform reliably in harsh environments. This paper thoroughly explains the experimental testbed setup and execution to demonstrate ZigBee's performance in several practical applications. This testbed is capable of measuring the minimum, maximum, and average received signal strength indicator (RSSI), bit error rate (BER), packet error rate (PER), packet loss rate (PLR), and the bit error locations. Results show that ZigBee has the potential capabilities to be used in all four tested environments

    Estudio de la fiabilidad de capas físicas inalámbricas de 2.45 GHZ en entornos industriales mediante emulación de canal.

    Get PDF
    141 p.Las comunicaciones inalámbricas ocupan un papel fundamental dentro de la Industria 4.0. Sin embargo, su uso en entornos industriales, aunque cada vez más presente, sigue siendo residual si se compara con las comunicaciones cableadas. Esto se debe a que las propiedades físicas del entorno industrial generan unas condiciones de propagación que distan mucho de ser ideales, afectando negativamente a la fiabilidad de las comunicaciones.Cuando se desea desplegar un enlace inalámbrico en un entorno industrial, es necesario realizar una validación de la fiabilidad de las comunicaciones que de ciertas garantías de funcionamiento. Las metodologías actuales presentan deficiencias cuando son aplicadas en entornos industriales, las cuales se traducen en una la falta de reproducibilidad y una la falta de exactitud de los resultados de las validaciones respecto a los obtenidos posteriormente tras el despliegue.Por ello, en esta tesis se define una metodología para evaluar y validar la fiabilidad de las capas físicas de sistemas de comunicaciones inalámbricos empleados por nodos terminales en casos de uso industriales. Esta metodología considera las métricas adecuadas para evaluar la fiabilidad, los parámetros necesarios para definir correctamente el escenario de medida, los detalles del setup de laboratorio y el algoritmo de comunicación a emplear.Así mismo, se aplica la metodología propuesta para evaluar y validar la fiabilidad de tres capas físicas definidas por los estándares inalámbricos IEEE 802.15.4 y Bluetooth Low Energy. Ello ha permitido obtener resultados de fiabilidad de todas las capas físicas tanto para canales de propósito general como para canales puramente industriales. También se han obtenido expresiones matemáticas para predecir la fiabilidad de las capas físicas bajo los diferentes canales industriales. Por último, se han validado dichas capas físicas para tres casos de uso industrial generales

    Estudio de la fiabilidad de capas físicas inalámbricas de 2.45 GHZ en entornos industriales mediante emulación de canal.

    Get PDF
    141 p.Las comunicaciones inalámbricas ocupan un papel fundamental dentro de la Industria 4.0. Sin embargo, su uso en entornos industriales, aunque cada vez más presente, sigue siendo residual si se compara con las comunicaciones cableadas. Esto se debe a que las propiedades físicas del entorno industrial generan unas condiciones de propagación que distan mucho de ser ideales, afectando negativamente a la fiabilidad de las comunicaciones.Cuando se desea desplegar un enlace inalámbrico en un entorno industrial, es necesario realizar una validación de la fiabilidad de las comunicaciones que de ciertas garantías de funcionamiento. Las metodologías actuales presentan deficiencias cuando son aplicadas en entornos industriales, las cuales se traducen en una la falta de reproducibilidad y una la falta de exactitud de los resultados de las validaciones respecto a los obtenidos posteriormente tras el despliegue.Por ello, en esta tesis se define una metodología para evaluar y validar la fiabilidad de las capas físicas de sistemas de comunicaciones inalámbricos empleados por nodos terminales en casos de uso industriales. Esta metodología considera las métricas adecuadas para evaluar la fiabilidad, los parámetros necesarios para definir correctamente el escenario de medida, los detalles del setup de laboratorio y el algoritmo de comunicación a emplear.Así mismo, se aplica la metodología propuesta para evaluar y validar la fiabilidad de tres capas físicas definidas por los estándares inalámbricos IEEE 802.15.4 y Bluetooth Low Energy. Ello ha permitido obtener resultados de fiabilidad de todas las capas físicas tanto para canales de propósito general como para canales puramente industriales. También se han obtenido expresiones matemáticas para predecir la fiabilidad de las capas físicas bajo los diferentes canales industriales. Por último, se han validado dichas capas físicas para tres casos de uso industrial generales
    corecore