150 research outputs found

    A Survey on Adaptive Multimedia Streaming

    Get PDF
    Internet was primarily designed for one to one applications like electronic mail, reliable file transfer etc. However, the technological growth in both hardware and software industry have written in unprecedented success story of the growth of Internet and have paved the paths of modern digital evolution. In today’s world, the internet has become the way of life and has penetrated in its every domain. It is nearly impossible to list the applications which make use of internet in this era however, all these applications are data intensive and data may be textual, audio or visual requiring improved techniques to deal with these. Multimedia applications are one of them and have witnessed unprecedented growth in last few years. A predominance of that is by virtue of different video streaming applications in daily life like games, education, entertainment, security etc. Due to the huge demand of multimedia applications, heterogeneity of demands and limited resource availability there is a dire need of adaptive multimedia streaming. This chapter provides the detail discussion over different adaptive multimedia streaming mechanism over peer to peer network

    Network coding meets multimedia: a review

    Get PDF
    While every network node only relays messages in a traditional communication system, the recent network coding (NC) paradigm proposes to implement simple in-network processing with packet combinations in the nodes. NC extends the concept of "encoding" a message beyond source coding (for compression) and channel coding (for protection against errors and losses). It has been shown to increase network throughput compared to traditional networks implementation, to reduce delay and to provide robustness to transmission errors and network dynamics. These features are so appealing for multimedia applications that they have spurred a large research effort towards the development of multimedia-specific NC techniques. This paper reviews the recent work in NC for multimedia applications and focuses on the techniques that fill the gap between NC theory and practical applications. It outlines the benefits of NC and presents the open challenges in this area. The paper initially focuses on multimedia-specific aspects of network coding, in particular delay, in-network error control, and mediaspecific error control. These aspects permit to handle varying network conditions as well as client heterogeneity, which are critical to the design and deployment of multimedia systems. After introducing these general concepts, the paper reviews in detail two applications that lend themselves naturally to NC via the cooperation and broadcast models, namely peer-to-peer multimedia streaming and wireless networkin

    Location-aware mechanism for efficient video delivery over wireless mesh networks

    Get PDF
    Due to their flexibility, ease of use, low-cost and fast deployment, wireless Mesh Networks have been widely accepted as an alternative to wired network for last-mile connectivity. When used in conjunction with Peer-to-Peer data transfer solutions, many innovative applications and services such as distributed storage, resource sharing, live TV broadcasting or Video on Demand can be supported without any centralized administration. However, in order to achieve a good quality of service in such variable, error-prone and resource-constrained wireless multi-hop environments, it is important that the associated Peer-to-Peer overlay is not only aware of the availability, but also of the location and available path link quality of its peers and services. This thesis proposes a wireless location-aware Chord-based overlay mechanism for Wireless Mesh Networks (WILCO) based on a novel geographical multi-level ID mapping and an improved finger table. The proposed scheme exploits the location information of mesh routers to decrease the number of hops the overlay messages traverse in the physical topology. Analytical and simulation results demonstrate that in comparison to the original Chord, WILCO has significant benefits: it reduces the number of lookup messages, has symmetric lookup on keys in both the forward and backward direction of the Chord ring and achieves a stretch factor of O(1). On top of this location-aware overlay, a WILCO-based novel video segment seeking algorithm is proposed to make use of the multi-level WILCO ID location-awareness to locate and retrieve requested video segments from the nearest peer in order to improve video quality. An enhanced version of WILCO segment seeking algorithm (WILCO+) is proposed to mitigate the sometimes suboptimal selection of the WILCO video segment seeking algorithm by extracting coordinates from WILCO ID to enable location-awareness. Analytical and simulation results illustrate that the proposed scheme outperforms the existing state-of-the-art solutions in terms of PSNR and packet loss with different background traffic loads. While hop count is frequently strongly correlated to Quality of Service, the link quality of the underlying network will also have a strong influence on content retrieval quality. As a result, a Cross-layer Wireless Link Quality-aware Overlay peer selection mechanism (WLO) is proposed. The proposed cross-layer mechanism uses a Multiplication Selector Metric (MSM) to select the best overlay peer. The proposed MSM overcomes the two issues facing the traditional summation-based metric, namely, the difficulty of bottleneck link identification and the influence of hop count on behavior. Simulation results show that WLO outperforms the existing state-of-the-art solutions in terms of video quality at different background loads and levels of topology incompleteness. Real life emulation-based tests and subjective video quality assessments are also performed to show that the simulation results are closely matched by the real-life emulation-based results and to illustrate the significant impact of overlay peer selection on the user perceived video quality

    Provider-Controlled Bandwidth Management for HTTP-based Video Delivery

    Get PDF
    Over the past few years, a revolution in video delivery technology has taken place as mobile viewers and over-the-top (OTT) distribution paradigms have significantly changed the landscape of video delivery services. For decades, high quality video was only available in the home via linear television or physical media. Though Web-based services brought video to desktop and laptop computers, the dominance of proprietary delivery protocols and codecs inhibited research efforts. The recent emergence of HTTP adaptive streaming protocols has prompted a re-evaluation of legacy video delivery paradigms and introduced new questions as to the scalability and manageability of OTT video delivery. This dissertation addresses the question of how to enable for content and network service providers the ability to monitor and manage large numbers of HTTP adaptive streaming clients in an OTT environment. Our early work focused on demonstrating the viability of server-side pacing schemes to produce an HTTP-based streaming server. We also investigated the ability of client-side pacing schemes to work with both commodity HTTP servers and our HTTP streaming server. Continuing our client-side pacing research, we developed our own client-side data proxy architecture which was implemented on a variety of mobile devices and operating systems. We used the portable client architecture as a platform for investigating different rate adaptation schemes and algorithms. We then concentrated on evaluating the network impact of multiple adaptive bitrate clients competing for limited network resources, and developing schemes for enforcing fair access to network resources. The main contribution of this dissertation is the definition of segment-level client and network techniques for enforcing class of service (CoS) differentiation between OTT HTTP adaptive streaming clients. We developed a segment-level network proxy architecture which works transparently with adaptive bitrate clients through the use of segment replacement. We also defined a segment-level rate adaptation algorithm which uses download aborts to enforce CoS differentiation across distributed independent clients. The segment-level abstraction more accurately models application-network interactions and highlights the difference between segment-level and packet-level time scales. Our segment-level CoS enforcement techniques provide a foundation for creating scalable managed OTT video delivery services

    Novel Techniques for Large-Scale and Cost-Effective Video Services

    Get PDF
    Despite the advance of network technologies in the past decade, providing video services to a large number of users remains a major technical challenge. This is especially true when it comes to serving high-definition videos. This thesis makes two contributions towards providing large-scale and cost-effective video services. 1) We consider the problem of periodic broadcast of popular videos in client/server video systems and present two novel techniques. Our research advances the state of the art with a segmentation rule that can generate a series of broadcast designs, among which we can choose the one that results in the smallest broadcast latency. We show that this rule allows us to design the broadcast technique that is the fastest up to date. 2) We then look at the problem of service scheduling in fully distributed peer-to-peer video systems, where a large number of hosts collaborate for the purpose of video sharing. Our proposed technique allows a client to be served by a server that is beyond its own file look up scope and can dynamically adjust client and server matches as new video requests arrive in the system. Our performance evaluation shows that these features dramatically improve the system performance to a large extent in terms of reducing service latency under a range of simulation settings

    Robust P2P Live Streaming

    Get PDF
    Projecte fet en col.laboració amb la Fundació i2CATThe provisioning of robust real-time communication services (voice, video, etc.) or media contents through the Internet in a distributed manner is an important challenge, which will strongly influence in current and future Internet evolution. Aware of this, we are developing a project named Trilogy leaded by the i2CAT Foundation, which has as main pillar the study, development and evaluation of Peer-to-Peer (P2P) Live streaming architectures for the distribution of high-quality media contents. In this context, this work concretely covers media coding aspects and proposes the use of Multiple Description Coding (MDC) as a flexible solution for providing robust and scalable live streaming over P2P networks. This work describes current state of the art in media coding techniques and P2P streaming architectures, presents the implemented prototype as well as its simulation and validation results

    Computer Science and Technology Series : XV Argentine Congress of Computer Science. Selected papers

    Get PDF
    CACIC'09 was the fifteenth Congress in the CACIC series. It was organized by the School of Engineering of the National University of Jujuy. The Congress included 9 Workshops with 130 accepted papers, 1 main Conference, 4 invited tutorials, different meetings related with Computer Science Education (Professors, PhD students, Curricula) and an International School with 5 courses. CACIC 2009 was organized following the traditional Congress format, with 9 Workshops covering a diversity of dimensions of Computer Science Research. Each topic was supervised by a committee of three chairs of different Universities. The call for papers attracted a total of 267 submissions. An average of 2.7 review reports were collected for each paper, for a grand total of 720 review reports that involved about 300 different reviewers. A total of 130 full papers were accepted and 20 of them were selected for this book.Red de Universidades con Carreras en Informática (RedUNCI

    PEER-TO-PEER 3D/MULTI-VIEW VIDEO STREAMING

    Get PDF
    Abstract The recent advances in stereoscopic video capture, compression and display have made 3D video a visually appealing and costly affordable technology. More sophisticated multi-view videos have also been demonstrated. Yet their remarkably increased data volume poses greater challenges to the conventional client/server systems. The stringent synchronization demands from different views further complicate the system design. In this thesis, we present an initial attempt toward efficient streaming of 3D videos over peer-to-peer networks. We show that the inherent multi-stream nature of 3D video makes playback synchronization more difficult. We address this by a 2-stream buffer, together with a novel segment scheduling. We further extend our system to support multi-view video with view diversity and dynamics. We have evaluated our system under different end-system and network configurations with typical stereo video streams. The simulation results demonstrate the superiority of our system in terms of scalability, streaming quality and dealing with view dynamics

    Digital content security: video streaming digital rights management system

    Get PDF
    Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science in Information Systems Security (MSc.ISS) at Strathmore UniversityThe usability and applicability of digital videos, especially through the Internet, offers great opportunities for Kenyan content creators to further their careers as the platform enables them to share ideas which contributes to knowledge in the field which in turn generates wealth in the industry as new and efficient ways of creating the content are discovered making the production and distribution process cost effective. The Internet is however proving to be a double-edged sword as there have been multiple reports and incidences of copyright infringement within the country. This can be largely attributed to the fact that the platforms available to the average user provide a convenient environment for them to make several copies of the protected media file and distribute them as they wish: which facilitates misuse, piracy and plagiarism. The purpose of this project was to mitigate the unlawful replication and dissemination on an enormous scale of digital videos that are owned by practitioners in the education industry and presented to end users over the Internet. This followed a move by the players in the industry to convert their content into a digital format to meet the demand for online classes. Popular avenues that have been used to acquire copies of the digital streams include by use of standalone file grabbing software such as Internet Download Manager or browser plugins such as DownThemAll. These software implementations are extremely simple to use and allow users to create local copies of the streams through a single click of a button. They therefore present a threat to an entire ecosystem as content creators are heavily dependent on revenues generated from their material. This study seeks to develop a solution in the form of a Digital Rights Management (DRM) system that can be used to secure video streams and, in the process, preserve their economic value. A DRM system secures and implements the rights associated with the use of digital content by use of a set of access control technologies, which ensures that the videos are consumed as intended, and no illegal duplicates are created. Rapid Application Software Development Methodology were leveraged to accomplish the objective
    corecore