388 research outputs found

    Methodologies for Designing Power-Aware Smart Card Systems

    Get PDF
    Smart cards are some of the smallest computing platforms in use today. They have limited resources, but a huge number of functional requirements. The requirement for multi-application cards increases the demand for high performance and security even more, whereas the limits given by size and energy consumption remain constant. We describe new methodologies for designing and implementing entire systems with regard to power awareness and required performance. To make use of this power-saving potential, also the higher layers of the system - the operating system layer and the application domain layer - are required to be designed together with the rest of the system. HW/SW co-design methodologies enable the gain of system-level optimization. The first part presents the abstraction of smart cards to optimize system architecture and memory system. Both functional and transactional-level models are presented and discussed. The proposed design flow and preliminary results of the evaluation are depicted. Another central part of this methodology is a cycle-accurate instruction-set simulator for secure software development. The underlaying energy model is designed to decouple instruction and data dependent energy dissipation, which leads to an independent characterization process and allows stepwise model refinement to increase estimation accuracy. The model has been evaluated for a high-performance smart card CPU and an use-case for secure software is given

    Virtual Cycle-accurate Hardware and Software Co-simulation Platform for Cellular IoT

    Get PDF
    Modern embedded development flows often depend on FPGA board usage for pre-ASIC system verification. The purpose of this project is to instead explore the usage of Electronic System Level (ESL) hardware-software co-simulation through the usage of ARM SoC Designer tool to create a virtual prototype of a cellular IoT modem and thereafter compare the benefits of including such a methodology into the early development cycle. The virtual system is completely developed and executed on a host computer, without the requirement of additional hardware. The virtual prototype hardware is based on C++ ARM verified cycle-accurate models generated from RTL hardware descriptions, High-level synthesis (HLS) pre-synthesis SystemC HW accelerator models and behavioural models which implement the ARM Cycle-accurate Simulation Interface (CASI). The micro-controller of the virtual system which is based on an ARM Cortex-M processor, is capable of executing instructions from a memory module. This report documents the virtual prototype implementation and compares both the software performance and cycle-accuracy of various virtual micro-controller configurations to a commercial reference development board. By altering factors such as memory latencies and bus interconnect subsystem arbitration in co-simulations, the software cycle-count performance of the development board was shown possible to reproduce within a 5% error margin, at the cost of approximately 266 times slower execution speed. Furthermore, the validity of two HLS pre-synthesis hardware models is investigated and proven to be functionally accurate within three clock cycles of individual block latency compared to post-synthesis FPGA synthesized implementations. The final virtual prototype system consisted of the micro-controller and two cellular IoT hardware accelerators. The system runs a FreeRTOS 9.0.0 port, executing a multi-threaded program at an average clock cycle simulation frequency of 10.6 kHz.-Designing and simulating embedded computer systems virtually. Cellular internet of things (IoT) is a new technology that will enable the interconnection of everything: from street lights and parking meters to your gas or water meter at home, wireless cellular networks will allow information to be shared between devices. However, in order for these systems to provide any useful data, they need to include a computer chip with a system to manage the communication itself, enabling the connection to a cellular network and the actual transmission and reception of data. Such a chip is called an embedded chip or system. Traditionally, the design and verification of digital embedded systems, that is to say a system which has both hardware and software components, had to be done in two steps. The first step consists of designing all the hardware, testing it, integrating it and producing it physically on silicon in order to verify the intended functionality of all the components. The second step thus consists of taking the hardware that has been developed and designing the software: a program which will have to execute in complete compliance to the hardware that has been previously developed. This poses two main issues: the software engineers cannot begin their work properly until the hardware is finished, which makes the process very long, and the fact that the hardware has been printed on silicon greatly restricts the possibility of doing changes to accommodate late system requirement alterations; which is quite likely for a tailor-made application specific system such as a cellular IoT chip. A currently widespread technology used to mitigate the previously mentioned negative aspects of embedded design, is the employment of field-programmable gate array (FPGA) development boards which often contain a micro-controller (with a processor and some memories), and a gate array connected to it. The FPGA part consists of a lattice of digital logic gates which can be programmed to interconnect and represent the functionality of the hardware being designed. The processor can thus execute software instructions placed on the memories and the hardware being developed can be programmed into the gate array in order to integrate and verify a full hardware and software system. Nevertheless, this boards are expensive and limit the design to the hardware components available commercially in the different off-the-shelf models, e.g. a specific processor which might not be the desired one. Now imagine there is a way to design hardware components such as processors in the traditional way, however once the hardware has been implemented it can be integrated together with software without the need of printing a physical silicon chip specifically for this purpose. That would be extremely convenient and would save lots of time, would it not? Fortunately, this is already possible due to Electronic System Level (ESL) design, which is compilation of techniques that allow to design, simulate and partially verify a digital chip, all within any normal laptop or desktop computer. Moreover, some ESL tools such as the one investigated in this project, allow you to even simulate a program code written specifically for this hardware; this is known as virtual hardware software co-simulation. The reliability of simulation must however be considered when compared to a traditional two-step methodology or FPGA board usage to verify a full system. This is because a virtual hardware simulation can have several degrees of accuracy, depending on the specificity of component models that make up the virtual prototype of the digital system. Therefore, in order to use co-simulation techniques with a high degree of confidence for verification, the highest accuracy degree should be employed if possible to guarantee that what is being simulated will match the reality of a silicon implementation. The clock cycle-accurate level is one of the highest accuracy system simulation methods available, and it consists of representing the digital states of all hardware components such as signals and registers, in a cycle-by-cycle manner. By using the ARM SoC Designer ESL tool, we have co-designed and co-simulated several microcontrollers on a detailed, cycle-accurate level and confirmed its behaviour by comparing it to a physical reference target development board. Finally, a more complex virtual prototype of a cellular IoT system was also simulated, including a micro-controller running a a real-time operating system (RTOS), hardware accelerators and serial data interfacing. Parts of this virtual prototype where compared to an FPGA board to evaluate the pros and cons of incorporating virtual system simulation into the development cycle and to what extent can ESL methods substitute traditional verification techniques. The ease of interchanging hardware, simplicity of development, simulation speed and the level of debug capabilities available when developing in a virtual environment are some of the aspects of ARM SoC Designer discussed in this thesis. A more in depth description of the methodology and results can be found in the report titled "Virtual Cycle-accurate Hardware and Software Co-simulation Platform for Cellular IoT"

    Modeling of Hardware and Software for specifying Hardware Abstraction Layers

    Get PDF
    International audienceIn this paper we describe a practical approach for modeling low level interfaces between software and hardware parts based on SysML operations. This method is intended to be applied for the development of drivers involved on what is classically called the “hardware abstraction layer” or the “basic software” which provide high level services for resources management on the top of a bare hardware platform. It is also an enabler for co-design processes since the design of hardware and software can be decoupled. In addition this approach is compatible with virtual prototyping technologies such as SystemC/TLM. An application to a simple a study case is provided for illustration purpose

    Multilevel MPSoC Performance Evaluation: New ISSPT Model

    Get PDF
    To deploy the enormous hardware resources available in Multi Processor Systems-on-Chip (MPSoC) efficiently, rapidly and accurately, methods of Design Space Exploration (DSE) are needed to evaluate the different design alternatives. In this paper, we present a framework that makes fast simulation and performance evaluation of MPSoC possible early in the design flow, thus reducing the time-to-market. In this framework and within the Transaction Level Modeling (TLM) approach, we present a new definition of ISS level by introducing two complementary modeling sublevels ISST and ISSPT. This later, that we illustrate an arbiter modeling approach that allows a high performance MPSoC communication. A round-robin method is chosen because it is simple, minimizes the communication latency and has an accepted speed-up. Two applications are tested and used to validate our platform: Game of life and JPEG Encoder. The performance of the proposed approach has been analyzed in our platform MPSoC based on multi-MicroBlaze. Simulation results show with ISSPT sublevels gives a high simulation speedup factor of up to 32 with a negligible performance estimation error margin

    Systematische Transaction-Level-Kommunikations-Modellierung mit SystemC

    Get PDF
    An emerging approach to embedded system design is to assemble them from a library of hardware and software component models (IP, intellectual property) using a system description language, such as SystemC. SystemC allows describing the communication among IPs in terms of abstract operations (transactions). The promise is that with transaction-level modeling (TLM), future systems-on-chip with one billion transistors and more can be composed out of IPs as simply as playing with LEGO bricks. However, reality is far out. In fact, each IP vendor promotes another proprietary interface standard and the provided design tools lack compatibility, such that heterogeneous IPs cannot be integrated efficiently. A novel generic interconnect fabric for TLM is presented which aims at enabling inter-operation between models of different levels of abstraction (mixed-mode) and models with different interfaces (heterogeneous components), with as little overhead as possible. A generic, protocol independent representation of transactions is developed, among with an abstraction level formalism. This approach is shown to support systematic simulation of state-of-the-art buses and networks-on-chip such as IBM CoreConnect and PCI Express over several levels of TLM abstraction. A layered simulation framework for SystemC, GreenBus, is developed to examine the proposed concepts. The thesis discusses new implementation techniques for communication modeling with SystemC which outperform the existing approaches in terms of flexibility, simulation accuracy, and performance. Based on these techniques, advanced concepts for TLM-based hardware/software co-design and FPGA prototyping are examined. Several experiments and a video processor case study highlight the efficiency of the approach and show its applicability in a TLM design flow.Eingebettete Systeme werden zunehmend auf Basis vorgefertigter Hard- und Softwarebausteine entwickelt, die in Form von Modellen (IP, Intellectual Property) vorliegen. Hierzu werden Systembeschreibungssprachen wie SystemC eingesetzt. SystemC ermöglicht, die Kommunikation zwischen IPs durch abstrakte Operationen, sog. Transaktionen zu beschreiben. Mit dieser Transaction-Level-Modellierung (TLM) sollen auch zukünftige Systeme mit 1 Milliarde Transistoren und mehr effizient entwickelt werden können. Idealerweise sollte das Hantieren mit IPs dabei so einfach sein wie das Spielen mit LEGO-Steinen. In der Realität sind jedoch IPs unterschiedlicher Hersteller nicht ohne weiteres integrierbar, und auch die Entwurfswerkzeuge sind nicht kompatibel. In dieser Doktorarbeit wird ein neuer, generischer Ansatz für die Transaction-Level-Modellierung mit SystemC vorgestellt, der Kommunikation zwischen Modellen auf unterschiedlichen Abstraktionsebenen (Mixed-Mode) und mit unterschiedlichen Schnittstellen (heterogene Komponenten) möglich macht. Der zusätzlich benötigte Simulations- und Code-Aufwand ist minimal. Ein protokollunabhängiges Transaktionsmodell und ein formaler Ansatz zur Beschreibung von Abstraktionsebenen werden vorgestellt, mit denen verschiedenartige Busse und Networks-on-Chip wie IBM CoreConnect und PCI Express auf verschiedenen TLM-Abstraktionsebenen simuliert werden können. Ein modulares Simulationsframework für SystemC wird entwickelt (GreenBus), um die vorgeschlagenen Konzepte zu untersuchen. Anhand von GreenBus werden neue Implementierungstechniken diskutiert, die den existierenden Ansätzen in Flexibilität, Simulationsgenauigkeit und -geschwindigkeit überlegen sind. Die Vor- und Nachteile der entwickelten Techniken werden mit Experimenten belegt, und eine Videoprozessor-Fallstudie demonstriert die Effizienz des Ansatzes in einem TLM-basierten Entwurfsfluss
    • …
    corecore