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Abstract

The integration scale of semiconductor chips has been continuously soaring high through-

out the years. Today, it is possible to integrate a complete system of IPs and commu-

nication networks on a tiny die area and form what is called a System-on-Chip (SoC).

To cope with this growing complexity and time-to-market pressure, the SoC industry

has accepted raising the abstraction level of system designs above RTL as an effective

approach. ESL (Electronic System Level) refers to different system modeling techniques

at a level of abstraction above RTL.

As part of ESL, in recent years Transaction Level Modeling (TLM) is obtaining a huge

attention in SoC design cycle, serving as a unique reference across different teams for

three strategic activities: early software development, architecture analysis and func-

tional verification. However, the name ‘transaction level’ is still a vague term as it does

not denote a single level of detail. Rather, TLM refers a continuum of abstraction levels

that each vary in the amount of functional or temporal detail they express depending on

the use case they are modeled for. Different researches have been made in the last few

years to define these abstraction layers from different point of views such as granularity

of time, functional abstraction, communication abstraction and use-cases. However the

dust has not yet settled down. Issues on models interoperability, flexibility, efficiency

and implementation details are not yet fully addressed due to the vastness of the topic.

In this Master’s thesis, an integrated TLM-based system level modeling approach for

multi-core systems is devised which is mainly targeting streaming applications. The

work begins with the specification of communication and computation refinement levels

as well as definition of abstraction layers in system level modeling. Then, a library of

communication APIs and models of components is prepared by reusing and modifiying an

existing framework called OCCN. Finally, a digital radio receiver streaming application

and a high-level AMBA AHB bus model, are carried out to show the usage of the

deviced methodology. The promising results obtained in simulation speed and model

use-cases indicate that the approach lays down the foundation for an integrated system

level modeling methodology which can be extended with new features and enhanced

library into a complete tool.
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Chapter 1

Introduction

Nowadays, embedded systems are ubiquitously available around us. They are tightly
linked to our daily life to the extent where it seems we can not live without them.
They are now the core entities in consumer electronics products, home appliances,
telecommunication, medical equipments, computing, automotive merchandises, multi-
media, aerospace, industry and so forth. This was possible because today’s advance-
ments in semiconductor technology have enabled complex Systems-on-Chips (SoC) to
be constructed in much compacted manner.

Since its first inception in the mid-20th-century, the integration scale of IC (Integrated
Circuit) technology has been soaring high. In the early days, ICs comprised tens of
transistors and were used to implement simpler logic gates. Today the technology has
enabled to squeeze millions of transistors in a tiny silicon die and form powerful proces-
sors. For instance, the Cell processor, Figure 1.1, which is used in Sony’s PlayStation3
comprises 234 million transistors in a die area of 221 mm2 [1]. The tremendous shrink-
age in size, reduction in cost and growth in capacity of semiconductor ICs have made
them to be embedded everywhere in utilities we use in our daily life.

However, the growing complexity and application dimension of modern embedded sys-
tems is putting significant pressure on designers and manufactures. This is because the
design of these systems involves contradictory constraints. On one hand, they often
target broad market coverage and therefore should be cheap, small-sized, power efficient
and be on market on time. On the other hand, they still need to satisfy performance re-
quirements, and often support multiple applications of multimedia content. The breadth
of the design requirements leads to designs of complex heterogeneous System-on-Chip
(SoC) architectures consisting of multiple processors, configurable processing cores, cus-
tomized hardware components, various memory units, peripheral interfaces and system
interconnection network integrated on a single chip. These multi-core SoCs have now
become the cornerstones in the development of today’s embedded systems such as digi-
tal audio/video receivers, game consoles, navigation systems, 3G mobile phones and so
many others.

1



2 1.1. Classical Design Flow

Figure 1.1: The Cell Processor: 234 million transistors in 221 mm2 die area

With the growing complexity of these systems, the design space also gets extensively
broad. This means there needs to be an efficient and systematic SoC development
methodology that fits the needs and characteristics of these multi-application multi-core
SoCs. In this chapter, the nature of the classical SoC design methodology and the related
challenges are presented in section 1.1 and 1.2. The objective and the key contributions
of this thesis are discussed in section 1.3 and 1.4. Finally the chapter concludes with an
overview of this thesis in section 1.5.

1.1 Classical Design Flow

Traditionally, for digital electronic embedded systems designs, which are composed of
discrete components such as microprocessors, memory chips and Application Specific
Integrated Circuits (ASIC), the design process usually starts with one or two system
design experts partitioning the functionality into hardware and software (Figure 1.2).

The hardware function is then further partitioned into standard parts and ASICs. It is
possible to write a specification for an ASIC of a few thousands to few hundred thousands
gates in a natural language. This specification is hand off to an ASIC designer or team,
who start capturing the design at Register Transfer Level (RTL) for which Hardware
Description Languages (HDLs) are a good match [2]. Once these HDL models pass the
functional verification test, synthesis is performed to obtain a logic netlist. After the
netlist is ready, the hardware design enters the back-end design steps. This basically
includes layout drawing, floorplanning, place and routing, and so on, all the way down to
physical verification. After this, the hardware design is essentially at a tape-out status
ready to be sent to fabrication for building a prototype of the system [3].

The software function, on the other side, is developed on the other corner of the design
floor with little or no communication with the hardware development. Mostly validating
the software is delayed until an emulator or FPGA-based prototype is available. Once
the system prototype is available, the software will be embedded into the prototype
to conduct system integration and validation. If system specifications are not satisfied
and/or faults are found in the hardware or software, the design process will be iterated
through both the hardware and software paths. These loops might repeat until system
specifications are satisfied [3].
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Figure 1.2: Classical SoC Design Flow [3]

As will be discussed in the next section, this classical design flow has a number of
limitations that makes it fall short of fulfilling the needs and characteristics of today’s
multi-application multi-core SoC development.

1.2 Challenges of Modern SoC Development

Two of the main bottlenecks in modern SoC development are the explosively widening
design space and the time-to-market pressure [3].
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• Explosive Design space
As the embedded system design shifts gear from system-on-board to System-on-
Chip paradigm, more applications are also being incorporated into the system to
accomplish more sophisticated tasks. A typical SoC comprises various types of
processors from fully programmable multi-processors to reconfigurable processors,
Application Specific Integrated Circuits (ASICs), memory chips, peripheral inter-
faces and system-wide interconnection network. Such SoC architectures often run
multiple software applications which vary in characteristics. Some of them might
have strict real-time performance requirement which the design should fulfil. Some
of them might have a dynamically changing runtime behaviour which makes de-
cisions difficult at design time. The design space in such a SoC is broad as the
designer has to investigate between various choices such as software partitioning,
task-to-resource mapping, memory size, type of interconnect, arbitration strategy,
communication protocol, bus width, burst size, topology and so many others. Us-
ing the RTL models discussed in section 1.1 for architectural analysis in the design
flow is too slow to cover this broad design space given the limited project time
available.

• Time-to-Market Pressure
The increasing complexity of current SoC products usually necessitates time-
consuming development phases. Besides, the competition in the SoC industry
is so fierce that the product development should proceed according to its intended
timeline and be on market on time to achieve the desired market success. Oth-
erwise, bankruptcy might be inevitable. The classical design approach discussed
in section 1.1 is not handy with this respect. First, RTL modeling complex SoCs
introduces too much detail which will be a bottleneck in project management
and reduce designer’s productivity. Secondly, system integration and validation is
delayed until a prototype is available. Thirdly, faults or unsatisfied system spec-
ifications are mostly discovered during system integration making first time chip
success difficult. This is mainly because the separate development path followed
in the classical design flow does not have a common platform where hardware and
software co-design could be done. The recursive nature of the fault correction
approach then introduces more delays in the design flow.

Due to these reasons, in recent years the SoC industry has been in search for robust
design methodologies for the design of heterogeneous multi-application multi-core SoCs.
One solution that has gained popularity in recent years is raising the modeling abstrac-
tion layers above RTL to achieve fast simulation time. Transaction Level Modeling
(TLM) is one such technique that enables modeling system communications at a higher
abstraction level above cycle accurate RTL to achieve fast simulation with the price of
accuracy for different use cases in the SoC design flow. However, the name ‘transaction
level’ is still a vague term as it does not denote a single level of detail. Rather, TLM
refers a continuum of abstraction levels that each vary in the amount of functional or
temporal detail they express depending on the use case they are modeled for. Different
researches have been made in the last few years to define these abstraction layers from
different point of views such as granularity of time, functional abstraction, communi-
cation abstraction and use cases. However the dust has not yet settled down. Issues
on models interoperability, flexibility, efficiency and implementation details are not yet
fully addressed due to the vastness of the topic.
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This thesis, which adds to such simlar efforts, tries to devise an integrated TLM-based
system level modeling approach for multi-core systems, which are mainly targeting
streaming applications. Objectives of this thesis are discussed in the upcoming section.

1.3 Thesis Objective

In the development process of streaming DSP applications it is useful to have a functional
model of the application that accurately models the interaction between the different
parts of the application running on the different components of the SoC. This makes it
possible to develop and test the entire application at functional level before the complete
SoC hardware is available. The goal of this Master assignment is to develop a system
level modeling and simulation framework for multi-core systems. The framework should
enable to integrate functional models of IP components with Network on Chip (NoC) or
bus interconnection network. The functional models of the communication infrastructure
in the multi-core simulation framework have to be developed as part of the project. The
developed framework then needs to be demonstrated with a test application. Therefore
the two main goals of this thesis work are the following.

1. Developing a system level modeling and simulation framework for multi-core sys-
tems.

• The framework should be able to model/simulate streaming DSP applications
running on multi-core SoCs, such as the CRISP [4] SoC.

• The framework should provide the necessary application programming inter-
face (API) for the different hardware components that can be used in the
final application running on the SoC.

2. Demonstrating the multi-core system level simulation with some applications.

• A digital radio receiver streaming application could be used as one of the
demonstrations.

• Simulation speed and use-case could be used to evaluate the demonstrations.

Additional requirements of this thesis work include the following.

1. The initial goal of the framework is to enable functional multi-core modeling/sim-
ulation but it should be possible to extend it to cycle accurate multi-core model-
ing/simulation in the future.

2. Investigating if the methodology can be the TLM 2.0 framework.

1.4 Contributions

This thesis aims at developing an integrated methodology for fast modeling and simula-
tion of multi-core systems. The main contributions achieved in the course of this work
are given below.
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• The specification of refinement levels in communication and computation aspect
of a system and the definition of abstraction layers in system level modeling of
multi-core systems. For better interoperability and usage clarity, the distinctive
features and use-cases of each layer are explicity specified.

• A system level design flow 4.12 that includes approaches for modeling data-dependent
software processes, building virtual platforms, integrating and simulating the sys-
tem at different levels of abstractions.

• Preparation of a library of communication APIs and models of components. This
is done by reusing and modifying an existing framework called OCCN [5].

• Demonstrating the use of the methodology with two applications: a digital radio
receiver streaming application (DAB receiver) and an AMBA AHB bus based
system with random data generators.

1.5 Thesis overview

This thesis is organized as follows. Chapter 2 discusses the basics of transaction level
modeling (TLM). It presents the fundametals of TLM, the various ingriedients needed
for TLM-based system modeling and how TLM fits in SoC design flows. Chapter 3 re-
views several works in the domain of system level modeling and compares their features.
This chapter also includes the brief description of transaction level modeling approaches
such as TLM 2.0. Chapter 4 dives into the system level modeling methodology devised
in this work. It discusses the definition of the different abstraction levels and the design
flow through the abstraction levels that minimizes design effort (reuse of components
between levels), balances the tradeoff between accuracy and simulation time and suits
recursive design practices. The library of the communication APIs and models of com-
ponents is also discussed in this chapter. The implementation of the two demonstration
applications is covered in chapter 5. The first section covers the modeling of the DAB
receiver at three different abstraction levels. The second section presents the AMBA
AHB bus based system where the bus is modeled at two different communication refine-
ment levels. Finally, the thesis concludes in chapter 6 with a summary of the work and
recommendations for potential future extensions.



Chapter 2

Transaction Level Modeling
(TLM)

The growing complexity in modern SoCs is forcing the industry to look for design
methodologies above RTL that can be used for architectural analysis and embedded
software development. In system level design of these SoCs, communication takes the
central role. Therefore a methodology for modeling communication at a higher abstrac-
tion level has become important. TLM is one such methodology that promises to be
used in system level SoC modeling for early software development, architectural analysis
and functional verification. The main goal of this chapter is to discuss the fundamentals
of TLM and its potential role in system level designs. Section 2.1 discusses the basics
of TLM and how it differs from the conventional cycle accurate modeling. Section 2.2
presents the key ingredients needed to integrate TLM in system level modeling of multi-
core systems. Finally the role of TLM in SoC design flows is pointed out in section
2.3.

2.1 Basics of TLM

It is quite common these days to use standard and well-known IP (Intellectual Property)
components in SoC development. This means system design mainly focuses on architec-
tural analysis. Hence system performance is significantly dictated by the communication
between IPs. However, choosing the most appropriate system interconnection network
and connection topology is not a simple task. The system designer needs to traverse a
huge design space to get to his/her best-fit architecture. The choice may start between
a bus, a NoC (Network-on-Chip) or a hybrid interconnect. For instance, design choices
related to a bus interconnect may include the following [6].

• Standard buses (for example, AMBA 2.0, AMBA 3.0, CoreConnect, WishBone,
STBus, etc.)

• Signal wires (shared or separate data, control and address bus)

• Bus width (data bus width and address bus width)

7



8 2.1. Basics of TLM

• Data transfer modes (for example, single non-pipelined, pipelined, burst, split
transfer, etc.)

• Arbitration (for example, centralized versus distributed, round-robin, TDMA, dy-
namic priority, etc.)

• Topology (for example, single bus, hierarchical bus, split bus, etc.)

• Layers (single layer and multi-layer)

Selection for a NoC also involves numerous set of decisions [7]: topology (for example,
mesh, torus, fat-tree, etc), router architecture (for example, worm-hole router, VCT
router, circuit-switching router, etc), routing algorithms, network interface buffer size
and so many others.

For each set of design decisions, the system designer needs to compute the cost with
metrices such as area, power, latency and throughput. To make things worse in addition
to the vastness of the design space, the dynamism of the multiple applications that run
on the SoC affects the performance figures significantly. This forces the system designer
to incorporate the software applications into the architecture analysis process, leading
to the need for a common platform for hardware-software co-design.

Carrying out such complex architectural analysis at cycle accurate level gives a pretty
accurate results but it has a number of disadvantages.

• Simulation is too slow for architectural analysis.

• It is available too late for architectural exploration.

• Modeling takes considerable design effort.

In addition, a library of cycle accurate model of components should exist to try out
different architectures at CA level. Even in the availability of such a library, integrating
components requires a significant design effort. Hence, making architectural changes
and trying out different possibilities is costly.

This is why TLM is proposed by the SoC industry to circumvent the drawbacks of cycle
accurate modeling in today’s complex SoC development [3] [8]. Figure 2.1 shows the
different modeling abstraction layers in SoC design flow and their distinctive features.
All modeling abstraction layers above RTL are termed as Electronic System Level (ESL).
Within ESL, modeling can be done at cycle accurate level, at TLM level or at algorithmic
level. Each of these levels have varying levels of accuracy and simulation time. This
makes each of them suitable for certain tasks in the SoC development process and unapt
for others.
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MasterIf *mif;
pdu<h,b,s> *p;
p.h.addr=0x00cf;
p.h.opcode=WR;
p.set_data(0x03);
mif->send(&p);
wait(delay);
...

p=sif->*receive();
switch(p.opcode){
case WR:
a=p.h.addr;
mem(a)=p.get_dat
a;
sif->reply(delay);
case RD:
...

Generic Transaction 
Interface

Master Slave

k=i*j;
wait();
REG2=k&0x007f;
wait();
HREQ.set(1);
wait();
DHADDR.set(REG1)
;
wait();
..

switch(D_WR){
case 1:
 CTR_WR=in;
 wait();
ACK.set(1);
wait();
break;
case 0:
...

Master Slave

Pin Interface

1
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Figure 2.1: Different modeling abstraction layers in SoC design flow

In cycle accurate modeling, components have pin-interfaces and every signal on the
interconnection link is simulated at every clock cycle. On the other hand, in TLM mod-
eling components have generic interfaces and communication is done through function
calls that takes as an argument a data structure which comprises signals in the com-
munication link. This technique is handy in achieving separation of communication and
computation, a key design target in TLM modeling frameworks.

A TLM-based system level modeling technique can be used for various use-cases [3] [9]
[10]:

• Early platform for software development

• Aiding software-hardware integration

• Architectural analysis

• Functional verification
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2.2 Fundamental ingredients of TLM-based system mod-
eling

The central theme of TLM is modeling communication at different levels of abstraction.
However, communication alone can not completely depict the behaviour and perfor-
mance of the system being modeled. Computation should also be captured into the
modeling picture. This triggers a need for a system level modeling approach that takes
both computation and communication aspects of SoCs into account. In TLM-based sys-
tem level modeling approach, communication is modeled with the techniques of TLM
and computation by its own needs a convenient approach to go in harmony with the
underlying TLM communication model. Developing a TLM-based system level mod-
eling framework needs three fundamental entities: Abstraction levels, Communication
Interfaces and Models of components.

Abstraction Levels
The name transaction level in TLM is still a vague term as it does not denote a single
level of detail. Rather, TLM refers a continuum of abstraction levels that each vary in
the amount of functional or temporal detail they express depending on the use case they
are modeled for [9]. A set of well-defined abstraction levels are key requirements for any
design flow. The distinctive features of each level should be unambiguously described
so that designers and tools can make systematic decisions and move between levels ef-
ficiently. The goal is to limit the number of objects to deal with at higher levels while
providing enough detail for the desired exploration at each step. This is achieved by
trading accuracy for efficiency, such as simulation speed and designer’s effort. Further-
more, a clear and unambiguous definition of these levels is then needed to enable design
automation for synthesis and verification [11].

Communication Interfaces
The generic interfaces in TLM modeled components are the heart of TLM as they pro-
vide the necessary communication between IPs which is the central theme of TLM.
Mostly these interfaces are implemented as APIs (Application Programmer’s Interfaces)
that can be used in various projects and help achieve interoperability between models.
The two most common interfaces are Master Interface and Slave Interface which are
used by transaction initiators and targets, respectively. Other interfaces include DMI
(Direct Memory Interface) Interface and Debug Interface [8] which are used for direct
memory accessing and system debugging, respectively.

Models of Components
TLM models of components which are available off the shelf significantly enhances pro-
ductivity in TLM modeling and help achieve crucial TLM use cases such as architectural
analysis. Even though interconnection networks are the central theme of TLM, it is in-
feasible to have a system level model of SoCs without the necessary models of processing
elements, memories and peripherals. Such a library of TLM models enormously improve
productivity of TLM modeling as model reuse and reliability are significantly high.

Hence, in order to prepare a TLM-based modeling framework, first an API of the com-
munication interfaces should be ready. Then use this API to prepare a library of SoC
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component models of the desired extent of detail. With the availability such of a well-
developed TLM library of components, a virtual platform of the SoC can be developed
with in minutes where software processes can be mapped and very fast simulation can
be done for software development and architectural analysis at the desired level of ab-
straction.

2.3 TLM in the design flow

Figure 2.2 shows how TLM can be used as a common platform for concurrent software-
hardware design in modern SoC development. The hardware and software developments
have different needs from the TLM model. The software development team needs fast
simulation time. Hence detailed communication protocol implementation can be left
out. Hardware development on the other hand needs detail timing points in the com-
munication protocol but fast enough simulation for architectural analysis. Hence the
TLM model should allow easy transition between abstraction levels to avoid the need
for multiple TLM models if it is intended to be used as common platform.

System Specification

Hardware-Software 
Partitioning

Hardware 
Development

Software 
Development

Prototype, System 
Integration and 

Validation

Chip Fabrication

Concurrent 
Hardware-Software 
Engineering Based 

on TLM

Design space 
exploration & 
Optimization

Figure 2.2: TLM in SoC Design Flow [3]
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2.4 Summary

The growing complexity in modern SoCs is forcing the industry to look for design
methodologies above RTL that can be used for architectural analysis and embedded
software development. In system level design of these SoCs communication takes the
central role. Therefore a methodology for modeling communication at a higher abstrac-
tion level has become important. TLM is one such methodology that promises to be
used in system level SoC modeling for early software development, architectural analysis
and functional verification. The three main TLM ingredients are the definition of the
abstraction layers, the APIs and the library of modeled components. The abstraction
layers help designers to deal with certain aspects in their exploration while abstracting
out irrelevant details. The communication interfaces enable TLM achieve separation of
communication from computation and interoperability between components. By incor-
porating TLM in a SoC design flow, it is possible to model systems at various abstraction
levels each with different level of accuracy and simulation time.



Chapter 3

Evaluation of Related Works

In the past few years, various researches have been done related with TLM-based system
level modeling. This chapter discusses these works with a brief description for each of
them. Due to the breadth of the topic, the related works investigation is categorized
into two sections. Section 3.1 summarizes a list of literatures that focus on defining
abstraction layers in TLM. Different efforts on developing TLM frameworks are discussed
in section 3.2. However, emphasis is mainly given to works that use non-proprietary
programming languages such as SystemC [12]. Section 3.3 summarizes the features of
these frameworks. Based on the assessments in the above sections, section 3.4 justifies
with four reasons the need for the TLM-based system modeling methodology presented
in this thesis.

3.1 Abstraction Layers

There has been a longstanding discussion in the ESL community concerning what is the
most appropriate taxonomy of abstraction levels for transaction level modeling. Models
have been categorized according to a range of criteria, including granularity of time,
frequency of model evaluation, functional abstraction, communication abstraction and
use cases. In this thesis, a survey is conducted on efforts made to specify the levels of
abstraction layers and their features in TLM.

A. Gerstlauer et al. [11] presented a division of the system level design process into
three models that support both computation and communication abstractions between
requirement and implementation models: specification, multiprocessing and architecture
layers. Table 3.1 shows the abstraction layers and their features in [11]. They showed
the use of their abstraction layers on a JPEG decoder.

A. Donlin [9] presented a series of use models and flows for the exploitation of transaction
level modeling in the development of complex system designs based on four abstraction
layers between algorithmic (ALG) and cycle-accurate (CA) models: CP, CP+T, PV,
PV+T. Five use models(UM1-UM5) are described according to the particular type of
system-product being designed. For each of these use models, refinement flows are pro-
posed selecting abstraction layers among the four.

13
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Table 3.1: Abstraction layers in system level design as presented in [11]

Level Computation Communication Structure Order Validate

Requirement Concepts Tokens Attributes Constraints Properties

Specification Behaviours Messages Behavioural Causality Functionality

Multiprocessing Processes Messages Processors Execution Delays Performance

Architecture Processes Busses/Ports Bus-functional Timing-accurate Protocols

Implementation FSMDs Signals Micro-architecture Cycle-accurate Clock cycle

L.Cai et al. [13] defined six abstraction models in the system design process as shown
in Table 3.2 and Figure 3.1. However use cases of the abstraction layers and details
for implementation are not provided.

Cycle-
timed

Cycle-
timed

Un-
timed

Approximate-
timed

Approximate-
timed

Un-
timed

A B

C D

E F

Communication

Computation

A. Specification model
B. Component-assembly model
C. Bus-arbitration model
D. Bus-functional model
E. Cycle-accurate computation model
F. Implementation Model

Figure 3.1: A 2D-view of abstraction layers in TLM as presented in [13]

The OCP TLM [14] defined four TLM use models: Functional View(FV), Architects
View(AV), Programmers View(PV) and Verification View(VV). However, these use-
models do not have a one-to-one correspondence with a particular abstraction layers.
Instead, these use-models define the requirements imposed on a transaction level model
to be adequate for a certain purpose.

A.Deb et al. [15] defined four abstraction layers above the implementation layer with
the features and use cases shown in Figure 3.2 and Table 3.3.
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Table 3.2: Abstraction layers in transaction level modeling as presented in [13]
Models Communication

Time
Computation
Time

Communication
Scheme

PE Interface

Specification
Model

No No Variable/Channel (No PE)

Component-
assembly Model

No Approximate Message-passing
channel

Abstract

Bus-transaction
Model

Approximate Approximate Abstract bus
channel

Abstract

Bus-functional
Model

Time/Cycle-
accurate

Approximate Detailed bus
channels

Abstract

Cycle-accurate
Computation
Model

Approximate Cycle-accurate Abstract bus
channel

Pin-accurate

Implementation
Model

Cycle-accurate Cycle-accurate Wire Pin-accurate

Cycle
accurate

Cycle 
accurate

Zero 
delay

Estimated

EstimatedZero 
delay

A B

C

D E

Communication

Computation

A. Functional model
B. Process transaction model
C. System transaction model
D. Bus transaction model
E. Implementation model

Figure 3.2: A 2D-view of abstraction layers in TLM as presented in [15]

3.2 SystemC-based Frameworks

Both in the academia and industry, there has been a significant effort in the devel-
opment of system level modeling and simulation frameworks. Because of the reasons
listed in section 3.4, our investigation does not include commercial products ([16–18]),
frameworks which are based on proprietary languages or are non-open source. The fol-
lowing subsections present brief description of those open-source system level modeling
methodologies which are based on SystemC.
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Table 3.3: Abstraction layers in system level modeling as presented in [15]

Model Communication Computation Transaction/Operation Model Characterstics

Functional Model Zero-delay Zero-delay Process execution (atomic ex-
ecution consisting of read,
computation, and write oper-
ations)

Process to resource mapping
is not done, communication
through infinite length FIFO

Process Transac-
tion Model

Zero-delay Estimated Bulk read from FIFO, Com-
putation (C function call,
with estimated delay), Bulk
write to FIFO

Process to HW/SW map-
ping is assumed, communi-
cation through finite length
FIFO, read/write to FIFO us-
ing get/put procedures.

System Transac-
tion Model

Estimated Estimated Bulk read from FIFO (with
estimated delay), computa-
tion (C function call with es-
timated delay), bulk write to
FIFO (with estimated delay)

Communication through
get/put procedures from/to
FIFO with estimated delay
for memory access using
shared medium

Bus Transaction
Model

Cycle-accurate Estimated Memory read (Req, Ack, Ad-
dress, Data, Split), computa-
tion (C function call with es-
timated delay), memory write
(Req, Ack, Address, Data,
Split)

Communication through cy-
cle accurate component in-
terface and shared medium,
read/write to memory using
physical address

Implementation
Model

Cycle-accurate Cycle-accurate Memory read (Req, Ack, Ad-
dress, Data, Split), cycle-
accurate computation (RTL,
ISS), memory write (Req,
Ack, Address, Data, Split)

Cycle-accurate computation-
RT level for HW implemen-
tation, or instruction level for
SW implementation.

3.2.1 OCCN

OCCN [5], On-Chip Communication Network, is an open-source research and develop-
ment framework for the specification, modeling and simulation of on-chip communication
architectures. It provides an API and object oriented C++ library built on top of Sys-
temC. The Master Interface (MasterIf), the Slave Interface (SlaveIf) and the Protocol
Data Unit (PDU) in the API enable communication between components. The library
can be extended with new components with guaranteed interoperability as long as the
common API is used. An OCCN channel implements blocking send and receive methods
for PDUs. Receive delays and timeouts can be specified as parameters, enabling timed-
modeling. Despite the good API based framework, the library does not have sufficient
models of components and lacks guideline for use cases and abstraction layers. It leaves
these issues as an implementation detail upto the user. In addition, computation as-
pects are out of the scope of this framework as it is a tool for communication networks.
Hence the library as it is, without additional extensions, can not be used for system
level modeling.

3.2.2 TLM 2.0

Founded in 2003, the Open SystemC Initiative (OSCI) TLM Working Group (TLM-
WG) pioneered the development of TLM frameworks for SystemC with the release of
the OSCI TLM kit 1.0. A set of three interfaces is provided that form the heart of the kit,
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enabling unidirectional blocking, unidirectional non-blocking, and bidirectional blocking
transfers. The TLM 1.0 kit does not define standard data types nor abstraction levels.
The intended use of the kit is to develop customized channels with it, using application-
specific data structures and user-defined protocols. Thus, the OSCI kit does not help in
achieving model interoperability. Having identified these issues, the OSCI TLM Working
Group released a revised version of the kit, OSCI TLM 2.0, in June 2008 [8]. TLM-2.0
consists of a set of core interfaces, analysis interfaces, initiator and target sockets,. It also
provides a generic payload and base protocol which enables modeling memory-mapped
buses. TLM 2.0 aims to be an industry standard transaction level modeling framework
that enables interoperability between models. Hence it kept itself away from specifying
abstraction layers and use cases around them. Rather, it recommends coding styles
which are appropriate for, but not locked to, various use cases. Though this increases
its flexibility for wider industry use, it introduces vagueness on implementation. Just
like OCCN, TLM 2.0 is all about communication. Therefore, a library of TLM 2.0
modeled components, including computation units, is needed to have a complete system
level modeling framework. In addition, TLM 2.0 does not have the generic payload for
Network-on-Chip interconnects.

3.2.3 OCP SystemC Channels

The OCP-IP (Open Core Protocol - Intellectual Property) [19] provides a comprehen-
sive library of point-to-point channels for modeling of SoCs based on the Open Core
Protocol with SystemC. Three levels of abstraction are supported, namely OCP-tl0 for
cycle accurate, OCP-tl1 and OCP-tl2 for CCATB (Cycle-Count Accurate at Transaction
Boundaries), and OCP-tl3 for PV (Programmer’s View) communication modeling. A
large set of interface methods for both blocking and non-blocking channel access is pro-
vided. OCP channels use predefined data types for transfer qualifiers such as address,
command, thread identifier, etc. and provide basic instrumentation for transaction
monitoring. However, they do not provide any means for communication architecture
simulation, as they only support point-to-point communication.

3.2.4 GreenBus

GreenBus [20] is an open-source TLM fabric built on top of the SystemC-2.1 library.
GreenBus supports simulation of both point-to-point communication modeling with ab-
stract channels and communication architecture of different bus architectures. GreenBus
follows a layered approach, as shown in Figure 3.3, that decouples the PE communica-
tion interfaces from the GreenBus interface, which is the underlying low-level transport
API denoted as connection layer.

GreenBus has the TAQ(Transaction-Atom-Quark) approach for the refinement of com-
munication transactions in TLM using the provided generic payload. Based on that,
three abstraction layers are identified: Programmer’s View(PV), Bus Accurate(BA) and
Register Transfer Level(RTL). Timing and data refinements are well discussed along with
implementation details. The authors claim that the concepts in the GreenBus framework
are used in the development of the industry standard TLM 2.0 framework. However,
abstraction layers in computation, Network-on-Chip interconnects and use cases are not
within the scope of the GreenBus TLM fabric.
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Figure 3.3: Layered Approach in GreenBus.(source: GreenBus White Paper [20]
)

3.2.5 CCATB AMBA Channels

In their paper on the CCATB simulation approach [21], Pasricha et al. present a CCATB
simulation model for the AMBA AHB and AXI buses and compare them with ARM’s
cycle accurate bus functional models. Figure 3.4 shows where the CCATB modeling
abstraction layer falls in the system design flow.

CCATB models aim at achieving fast simulation while encompassing sufficient timing
points for architectural exploration. A speedup of 55% with respect to a cycle accurate
model is achieved in their experiments. This limited result may be due to the utilized
instruction set simulator.

3.2.6 OSSS

The goal of the OSSS library from OFFIS Oldenburg [22] is to enable HW/SW commu-
nication modeling with synthesizable channels. OSSS supports a two-layered channel
model. Internally, a set of sc signals is used, which is equivalent to RTL wires and
therefore synthesizable. An application layer provides more abstract convenience meth-
ods. For bus modeling a predefined read/write interface is proposed. A protocol library
contains different implementations of these interface methods: e.g. to simulate Core-
Connect’s OPB (On-chip Peripheral Bus). Data transport and arbitration in OSSS is
performed at the RTL level of abstraction. Thus, bus simulation is cycle accurate. The
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Figure 3.4: CCATB in System Design Flow (source: [21]
)

simulation performance achieved with this approach, hence, is hardly better than with
pure RTL models. HW/SW communication synthesis is not discussed.

3.2.7 ARMn

ARMn [23] is an open-source multiprocessor cycle-accurate simulator which can sim-
ulate a cluster of ARM processor cores connected by custom communication schemes,
such as wormhole based packet-switching, fully connected crossbar switches or regular
standalone buses. The topology supported include mesh, torus and star shape. The
PE model used by ARMn is based on the ARM simulator, SimIt-ARM [24]. The com-
munication part is written in SystemC which wraps the PE model around and enables
it to communicate with other SystemC modules. ARMn focuses on a very specific ar-
chitecture and shows the possibility of integrating a cycle accurate ISS (Instruction Set
Simulator) processing element model with high level SystemC interconnection networks.
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3.3 Evaluation

From the investigation carried out on related multi-core modeling frameworks, it is found
that, in one or the other way, each of them does not fit the objectives of this thesis (Chap-
ter 2) in their current shape. This leaves us two alternative ways in the development
of the multi-core modeling methodology. The first option is to build everything from
the scratch as a new framework while the other alternative is to reuse existing works
with the necessary additions and modifications to make them fit our needs. Taking into
account the time and resource available for this thesis work, a preference is made for the
second option. We figured out that TLM 2.0 [8], GreenBus [20] and OCCN [5] are the
three top candidates for this purpose mainly because of their generic nature (3.4).

GreenBus and TLM 2.0 more or less follow the same approach and even GreenBus’s
communication refinement concept is reused in TLM 2.0. The GreenBus distribution
package comes with a set of bus interconnect examples and complete communication
APIs for bus based systems. However its scope is limited to the refinement of bus-based
communication protocols and the necessary APIs for bus-based systems.

Though the TLM 2.0 is a powerful standard that provides all the communication APIs
and the generic payload for memory-mapped bus interconnects, it does not have a similar
off the shelf construct for NoC interconnects. The distribution package has some simple
examples in it, but neither a library of components nor definition of abstraction levels.
Even though all of these can be constructed from the provided package, it is dropped
from the list of candidates because the creation of a new payload for NoC interconnects
contradicts the notion of TLM 2.0’s interoperability objective and the construction of
a complete library of components from the scratch might take a considerable time.
Nevertheless, as it will be discussed in Chapter 6: Conclusions and Future works, TLM
2.0 is a promising and powerful standard for the construction of a multi-core system
level modeling methodology.

The scope of OCCN is limitted to the construction and refinement of on-chip communi-
cation networks such as buses and NoCs. Even though the distribution package does not
come with a complete library of model of components, the example generic bus, point-
to-point channel and NoC models give directions on how more accurate and specific
interconnects can be built up. Hence we decided to construct our system level model-
ing methodology around OCCN by adding the specification of computation refinement
levels, definition of system level abstraction layers, models of computation and memory
components as well as models of additional communication networks. The methodology
also includes strategies on how to integrate models of various abstraction layers in the
SoC design flow.

3.4 Justification

Both in the academia and industry, there has been a significant effort in the development
of system level modeling and simulation frameworks. In the previous chapter, some of
the main ones are presented and their key features are pointed out. In this section,
four main reasons are discussed that triggered the need for the TLM-based system level
modeling methodology devised in this thesis work.
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Table 3.4: Summary of features of investigated frameworks

Features OCCN TLM 2.0 ARMn OCP GreenBus CCATB AMBA

Channels Channels

Abstraction levels 4 4 4 2� 2� 4

Communication interfaces 2� 2� 2� 2� 2� 2�

Computation models 4 4 2� 4 4 4

NoC support 2� 4 2� 4 4 4

Models of components 4 4 2� 4 4 4

Genericity 2� 2� 4 4 2� 4

3.4.1 Languages

Since electronic system designers accepted system level modeling as a tool to cope with
the ever increasing complexity of modern SoC development, different programming lan-
guages have been proposed to raise the level of abstraction. The first category of such
languages are the hardware-oriented languages such as VHDL, Verilog, SystemVerilog,
etc. These languages are found to be quite slow for complex system level modeling and
unapt for software modeling. The other category of languages are general purpose pro-
gramming languages such as C, C++, Java, etc. These languages are software-oriented
and hence mostly do not have enough constructs for hardware descriptions. The third
category are proprietary languages such as CowareC, SpecC, HardwareC, MyHDL, etc.
Mostly languages in this category are designed to be appropriate for ESL modeling
by balancing between the first two categories. However they also have a number of
drawbacks. Some of the disadvantages of proprietary languages are [3]:

• Long learning curve for mastering each specific tool suite.

• Difficult to exchange models between different teams because of license issues and
tool suite installations.

• High cost owing to license fees required for model development and simulation.

• Uncertainty of support for languages coming from research projects.

Due to these reasons, we found system level modeling approaches which are based on
hardware-oriented, software-oriented or proprietary languages unfit to fulfil the objec-
tives of this thesis work which are listed in Chapter 2. Hence, we focused on ap-
proaches which are based on non-proprietary languages that support hardware-software
co-simulations. For this purpose SystemC [12] is found to be the best candidate due to
the following reasons.

• It is a non-proprietary, free and open-source language.

• It is an industry standard language that assures interoperability.

• It supports both hardware and software primitives.

• A simulation kernel is available with it.
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• It depends on standard C++ compilers.

• Easy learning curve as it is based on the C++ language.

Our related work investigation, thus, dropped all approaches which are not based on
SystemC.

3.4.2 Integrated Approach

In Chapter 1, the basic ingredients needed in the development of a complete system
level modeling and simulation framework are pointed out. Most of the related works
investigated miss one or more of these ingredients. In this thesis work, it is tried to come
up with an integrated modeling approach that covers the following.

• The definition of the levels of abstraction

• The preparation of the library which includes the communication APIs, models of
interconnection networks, processing elements, memory and transaction interfaces

• The modeling of software applications

• Tntegration and simulation strategies

We believe that this integrated approach puts the foundation for multi-core modeling
and simulation framework which can be extended and refined with future works.

3.4.3 Cost

There are a number of commercial products for TLM-based system level modeling based
on SystemC [18], [16], [17]. These products may have sufficient library of components,
fast simulation kernels and an easy-to-use graphical user interfaces that makes the life
of the designer quite easy. However, these products are quite expensive and may be
unaffordable for small-scale projects, academia researches and personal use.

3.4.4 Efficiency

Last but not least, all modeling approaches are not equally efficient. They may vary
in their level of accuracy, simulation time, design effort, learning curve and fitness for
the intended purpose. The continuously changing and growing nature of modern SoC
development also brings new issues in the modeling arena. Hence, the vastness and
dynamism of the topic dictate that there is always a space for improvement in the
modeling strategies followed.
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3.5 Summary

This chapter justifies with four main reasons the need for the TLM-based system level
modeling and simulation framework developed in this thesis work. It is found that most
of the investigated related works do not use a non-proprietary language, do not have
all the necessary ingredients for system level modeling, are costly and/or not openly
available. Therefore, to come up with an efficient framework for the modeling of multi-
core systems, our methodology aimed at devising a SystemC-based integrated approach
that focused particularly on streaming applications. From the investigation carried out
on related multi-core modeling frameworks, it is found that, in one way or the other,
each of them does not fit the objectives of this thesis (2) in their current shape. Hence
in this work, it is prefered to reuse existing frameworks with the necessary additions and
modifications to make them fit our needs rather than creating a new framework from
scratch. And for that purpose, the OCCN [5] library is used.





Chapter 4

Methodology for TLM-based
System Level Modeling

This chapter discusses the TLM-based system level modeling methodology proposed in
this thesis work. The approach is categorized into five main sections. In the first section,
definition of abstraction levels is given. Section 4.2 details the construction of the TLM-
based library which is based on the open-source OCCN [5] framework. How this library
can be used for building virtual SoC platforms is presented in section 4.3. Next, the
software application development aspects are covered in section 4.4 and bringing the
whole approach together for the system level modeling of multi-application multi-core
SoCs is discussed in section 4.5.

4.1 Abstraction Levels

The abstraction levels defined in this thesis work are by large inspired by the concepts
discussed in Chapter 3: Related Works . The 2D, communication versus computation,
graphs used in [13] and [15] are nice figures to show the orthogonalization of concerns
[25] and the refinements in computation and communication. Thus, the same approach
is followed in this work.

4.1.1 Communication Refinement

Communication abstraction comprises both timing and data abstraction. A bottom-up
approach can help to define these levels of abstractions. Figure 4.1 shows an instance of
a bus transaction.

During these transactions, signal values are changed by both the master and slave. The
transactions are initiated by a clocked request signal. After the bus arbiter grants access,
the master sets the target address, which later is acknowledged by the slave. Then data
transmission is performed. The first transaction shows a single-beat transfer, whereas
the second transaction is a burst transfer. The timing length of the transactions is
defined by the idle/busy state changes of the protocol. Now we can consider different
time points of the communication to model it at different levels of timing abstractions

25
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Figure 4.1: An instance of a bus transaction

as shown in Figure 4.2. A similar approach is originally used in GreenBus [20] and later
by TLM 2.0 [8].

Cycle Level 
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Phase Level 
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(TL)

Entire Transfer

Data PhaseInit Phase Finalizing Phase

Clock Cycle

Transaction Start Transaction End Transaction Visibility Point

Figure 4.2: Communication Refinements

• Cycle level: Signals are simulated at each clock cycle and value changes are
traced.

• Phase level: The entire transaction is split into phases that show distinct aspects
of the protocol that the user is interested in and timing is limited to the start and
end points of the phases. For instance, for the above bus transaction, we can have
three phases.
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– Initialization phase: the exchange of control signals from the master request
upto the point where the master and the slave are ready to exchange data.

– Data transfer phase: the transfer of the data and all accompanying qualifiers
such as byte enables or error flags.

– Finalization phase: the exchange of all control signals to release the bus.

• Transfer level: change of signals and timing only at the start and end of the
entire transaction are simulated.

Simulation speed increases in the order Cycle-Phase-Transfer level but the accuracy of
the simulation result decreases in that order as well. In addition, the visibility of the
transaction drops as we go from cycle to transfer level. This means certain category of
information can be extractable in one level but not in the others. For example on the
transfer level, we have information on how long the entire transfer takes but no clue on
how much of this time is spent due to arbitration delay, slave overhead or transmission
delay. However this information can be obtained if the communication protocol is sim-
ulated on the phase level though at lower accuracy than the cycle level.

4.1.2 Computation Refinement

Transaction level modeling mainly focuses on the communication aspect of the SoC
design process. This is reasonable because using standard IPs is a very common phe-
nomenon in today SoC designs and therefore the main focus of the design will be on
performance optimization and functional verification of the communication architecture.

Figure 4.3: Example embedded processor: ARM926EJ-S
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Non-functional models, where IPs are modeled as a black box and simulated with syn-
thetic workload, are a suitable choice for design space exploration and high level ar-
chitectural exploration. However for functional modeling where the virtual platform is
going to be used for real software development and analysis, the computation models
play a very critical role. Even architectural analysis of SoCs which are designed for
multiple and/or dynamic applications can not provide dependable performance figures
without simulating the actual workload using appropriate computation models.

Following a bottom-up approach as previous, let’s consider a typical embedded processor
(e.g. ARM processor shown in Figure 4.3), with internal cache memory, that runs some
OS (Operating System) features and other software applications. When the system is
started, a boot program loads the OS (and other applications) to the system memory.
The processor fetches these programs from system memory and starts executing.

Application processes

IP model

System processes

Communication interface

The set of application software processes 
which are mapped on the processing 
element

Additional system processes such as 
scheduling and configuration processes. It 
may also be an embedded RTOS kernel

The IP model be either a set of approximate 
execution delays of processes or a CA RTL/
ISS model of the IP

Handles transactions and provides the 
interfaces for communication and 
interoperability with the underlying 
communication network

Figure 4.4: Separation of concerns in modeling computation units

Below here three levels of refinements are listed in modeling computation units. Each
level is defined based on how it manages the four main concerns shown in Figure 4.4.

• Computation Refinement Level 0 (CRL0): CRL0 is a single-process compu-
tation model. Assuming the processor runs only one process, the effect of the OS
kernel is very minimal and can be ignored. The software process runs on the sim-
ulating host machine but the IP model may have a static approximate timing to
reflect the execution delay of the process when it runs on the actual IP. The com-
munication interface serves to connect this processing element to the underlying
interconnection network and have the necessary features for proper communica-
tion.

• Computation Refinement Level 1 (CRL1): CRL1 is a multi-process com-
putation model. When multiple processes are mapped on the processing element,
some OS features are needed for tasks such as scheduling and configuration. Ap-
proximate timing delays are used for the IP model to analyse the effect of the OS
kernels and execution delays of the processes on the actual IP. The communication
interface serves the same purpose as previous.
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• Computation Refinement Level 2 (CRL2): CRL2 is a multi-process and
specific-processor computation model. On this abstraction level more accurate
simulation is needed. The IP model is an ISS/RTL model of the specific IP being
modeled which may have to be wrapped for appropriate communication with the
external communication architecture. Additional OS features may be added as
needed.

Table 4.1 shows the computation refinement levels and their features.

Table 4.1: Computation Refinement Levels and their Features

Concerns CRL0 CRL1 CRL2

Application Single Multiple Multiple

processes process processes processes (binaries )

System Not needed Single or Single/Multiple

processes muliple process(es) process(es) (binaries)

IP None/Approximate Approximate CA-ISS

model execution delay execution delay

Communication TLM interface TLM interface Pin-interface/

interface TLM interface

4.1.3 Abstraction Levels in System Level Modeling

Combining the various communication and computation refinements discussed in the
previous subsections, different abstraction levels in system level modeling can be defined.
While defining the abstraction levels, a use case centric approach is followed. A use
case refers to the particular purpose a model is being designed for. This approach is
selected based on the practice and interest of the SoC industry. The advantage of use
case based approach is that features of each level can be selected from the perspective
of desired use case. The drawback on the other hand is that it limits the defined set of
abstraction levels to the covered use cases only. However, it is always possible to define
new intermediate abstraction levels with the inclusion or removal of a set of features
between the already specified ones.

The main goal in the definition of each abstraction level is to obtain a system level model
for the desired use case while trading accuracy for simulation time. The 2D graph shown
in Figure 4.5 shows the different abstraction levels defined for system level modeling.



30 4.1. Abstraction Levels

CL

PL

TL

UT

CRL-0 CRL-1 CRL-2

A B

C C

D D

E F A

B

C

D

E

Functional Model (FM)

Process Model (PM)

Transfer-based System 
Level Model (TSLM)

Phase-based System 
Level Model (PSLM)

Protocol-Specific System 
Level Model (PSSLM)

Implementation Model (IM)

Communication

C
o

m
p

u
ta

ti
o

n
s

F

Figure 4.5: Abstraction layers in TLM-based System Level Modeling

It should be noted that other intermediate abstraction layers can be defined by com-
bining various communication and computation refinement points per component level.
Depending on the user’s point of interest, a TLM model that emphasize certain aspects
of the system while abstracting the rest can be modeled making use of the separate
communication and computation refinements proposed above. For example, in PSLM
it might be reasonable to model some processing nodes at cycle-accurate level (CRL2)
while keeping the rest at CRL1 level.

4.1.4 Features and Use Cases of the Abstraction Levels

The distinctive features and use cases of the various abstraction layers is discussed in
the following subsections.

4.1.4.1 Functional Model (FM)

Parallel computer programs are more difficult to write than sequential programs; because
concurrency introduces more software bugs, such as race conditions. Performance of the
parallel program depends on the communication and synchronization points between the
parallel processes. This implies the partitioning influences the amount of communication
to be performed.

The main goal of FM is an architecture-free functional modeling of multiple concurrent
processes at the very early stage of the design. Performance statistics extracted from
this model can be used to compare various software partitioning options and improve
parallelism of processes execution. This model is similar to the specification models of
[11] and [13], the CP model of [9], FV model of [14] and the FM model of [25]. Typical
features of this model are the following:

• A set of processes running in parallel and connected with point-to-point dedicated
links based on their data flow dependency.
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• This is an architecture-free implementation: No decision is made on the number of
processing elements, interconnection network, task-resource mapping and memory
size.

• Processes have infinite input and output buffer sizes.

Some uses of models at this abstraction layer includes an architecture-free software
development at functional level, assisting decision on software partitioning (partitioning
points and data sizes) and starting point buffer sizes for models at a lower abstraction.

4.1.4.2 Process Model(PM)

When task to resource mapping is done, system resources such as processors and commu-
nication interfaces may be shared between multiple tasks resulting in resource contention.
Hence it is very important in the design flow to analyse the schedulability and imple-
mentability of the system over the limited system resources available. Certain data flow
networks such as SDF have efficient techniques for verifying schedulability and imple-
mentability over fixed FIFO sizes without actually running the process executable [26].
However, complex real world streaming applications posses very dynamic behaviour that
makes such data flow models unfit for this purpose. Thus, the process model aims at
achieving this goal by refining the functional model by grouping processes and mapping
them onto a processing node while largely preserving the original processes’ communi-
cation. In addition, this model can be used as a bridge to the other lower abstraction
layers easing the modeling effort.

PM is a partially architecture dependent model that introduces task mapping and
scheduling. Models at this layer can be used to check implementability of the stream-
ing applications with fixed buffer sizes and number of processing elements (PEs). This
model is similar to the multiprocessing model of [11] and the PTM model of [15]. The
interconnection network is the same point-to-point links used in the FM. The sets of
processes are taken from the FM and additional design decisions are made. The design
decisions at this level include process mapping, process execution delay, task scheduling
and input-output buffer sizes.

Models at this level of abstraction can be used to study impacts of design decisions on
mapping, scheduling and buffer sizes. OS kernels can also be modeled as additional
processes (for instance as a non-functional task model of a given execution delay) and
their impact on the system can also be considered. The developer may iteratively switch
between FM and PM to investigate between different software partitioning, mapping and
scheduling options.

4.1.4.3 Transfer-based System Level Model (TSLM)

Software development and its performance evaluation without considering the SoC plat-
form interconnect architecture does not lead to realistic performance results. In most
real SoCs where a shared bus or a NoC is used as communication network, contention
occurs as multiple transactions may compete to access the network and transactions
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have to be arbitrated. In addition, the communication network has fixed bandwidth
which mandates the variable size transactions of the processes in FM and PM models to
be fragmented into multiple transactions of a given fixed size. The implementation of the
FIFOs of the FM and PM models is also important information for software development
which should be brought into the modeling picture at this stage. For example the FIFOs
could be implemented using message passing or shared memory; the single address space
of the shared memory could have centralized or distributed physical memory. There is
a wide design space related to the implementation of the communication architecture
as well. On bus interconnects, for instance, decisions have to be taken on bus width,
arbitration priorities, number of layers, the standard protocol, etc. Instead of a bus, a
NoC-based architecture can be used. However, modeling the communication protocol
in these communication networks with its full timing points makes the simulation time
too slow for software development that simulates applications and possibly operating
systems.

TSLM aims at providing an architecture-dependent virtual SoC platform model for
software development and analysis. Some features of this abstraction level are given
below.

• This layer is inspired by the LT coding style of the TLM 2.0 standard [8] and has
similarities with the bus-arbitration model of [13], the STM model of [15], and the
AV of [14].

• The same nodes with mapped processes which are used in the PM model are reused
here.

• The point to point communication links of the FM and PM levels are replaced by
a high level interconnect model such as bus or NoC with appropriate arbitration.

• Transactions use a blocking interface with only two timing points to achieve high
simulation speed. The first timing point is the transport call from the initiator
to the target and the second timing point is the return of the transport function
from the target back to the initiator. These timing points are typically associated
with the beginning of the request and response phases of the transaction.

• All transactions are done using a protocol data unit which is a data structure that
models the signalling in the intercommunication network.

4.1.4.4 Phase-based System Level Model(PSLM)

Though the TSLM level, which only has two timing points, is suitable for software de-
velopment and analysis, the limited amount of timing details makes it unsuitable for
the communication architecture exploration. A more detailed transaction-level model
need to associate multiple protocol-specific timing points with each transaction, such as
timing points to mark the start and the end of each phase of the protocol. By choosing
an appropriate number of timing points, it is possible to model communication to a high
degree of timing accuracy without the need to execute the component models on every
single clock cycle. The approximately timed (AT) coding style in TLM 2.0 [8] standard
and the Bus-accurate (BA) layer of GreenBus [20] are examples of such a technique.
Even though more timing points increase the simulation time, this model is significantly
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faster than cycle level simulations. With PSLM, HW-SW co-simulation can be done
by trying out various design options such as bus transfer modes (burst types and beat
sizes), single-layer versus multi-layer bus, router arbitration techniques, bus width, bus
protocol, multi-port versus single port DMA and so many others.

The main goal of PSLM is an architecture-dependent virtual SoC platform model for
communication architecture analysis. It offers a faster simulation time and less design
effort modeling option than cycle accurate network modeling. It can use the same nodes
as used in TSLM as long as the necessary modifications are done on the communication
interfaces. Process execution can be modeled with an approximate timing delay. Trans-
actions use non-blocking interfaces with more timing points including the two timing
points of TSLM.

4.1.4.5 Protocol-Specific System Level Model(PSSLM)

Once design exploration is made on the communication architecture using PSLM ab-
straction layer, verification of the specific communication protocol needs to be done. In
PSSLM, the limited timing points of PSLM are extended to full scale that evaluate signal
changes at every clock cycle. The generic protocol data unit should also be replaced by
the specific data unit of the communication protocol planned to be used. The process-
ing nodes can be modeled either fully at multi-process level (CRL1) or a combination
of multi-process(CRL1) and cycle accurate level (CRL2). This model can be used for
functional verification of the selected communication protocol and to validate if certain
system specifications are satisfied such as throughput and latency.

4.1.4.6 Implementation Model (IM)

The Implementation Model (IM) is a complete but non-synthesizable representation of
the SoC in a high level programming language. The model can be used for functional
verification, system specification validation and debugging. It can also be used as the ref-
erence model for RTL modeling of the SoC. Simulation is considerably slow as compared
to the PSSLM and PSLM models. However, accurate results are guaranteed.

4.2 Library

As discussed in section 2.2, communication interfaces and models of components are
among the essential ingredients needed for TLM-based system level modeling. A well
designed library of components and communication interfaces, therefore, assures efficient
modeling strategy as model reuse, reliability and extendibility are quite high. For the
demonstration of the system level modeling methodology devised in this thesis work, we
preferred to reuse an existing library rather than creating a new one from the scratch.
The library is based on the open-source OCCN [5] package. Even though the authors
claimed that they have used their library to experiment a bunch of specific commu-
nication protocols such as AMBA and STBus as well as some real SoC models, the
open-source distribution they provided on their website has only the core communica-
tion interfaces, a point-to-point channel and a generic bus interconnect. In this section,



34 4.2. Library

it is clearly shown what modifications have been done on the package, which components
are reused and what new components are added.

4.2.1 OCCN’s Communication Methodology

The OCCN methodology focuses on modeling complex on-chip communication network
by providing a flexible, object-oriented C++-based library built on top of SystemC as
shown in Figure 4.6.

Communication Layer
(Bus, Point-to-point channels, NoCs such as Mesh)

Communication API
(Protocol data unit and Communication interfaces)

Utilities
(Buffers, Random 

generators, ...)
SystemC 2.2

Figure 4.6: OCCN’s library construction

The OCCN methodology defines three distinct OCCN layers [5]: Communication layer,
Adaptation layer and Application layer from bottom to top. Communication between
these three layers is made possible by the two OCCN APIs: the communication API
and the application API. The OCCN communication API is based on a message-passing
paradigm providing a small, powerful set of methods for inter-module data exchange
and synchronization of module execution. This paradigm forms the basis of the OCCN
methodology, enhancing portability and reusability of all models using this API. The
application API enables communication between the application and adaptation layers.
Since the adaptation layer is left out in the experimentation of this thesis, the application
API is avoided as well.

When applying the OCCN conceptual model to SystemC, the following mappings can
be identified.

1. Communication API
It is implemented as a specialization of the sc port SystemC object. This API
provides the required buffers for inter-module communication and synchronization
and supports an extended message passing (or even shared memory) paradigm
for mapping to any NoC. The fundamental components of the OCCN’s commu-
nication API are the Protocol Data Unit (Pdu), the MasterPort interface and the
SlavePort interface. This API is entirely used in the modified library. However,
a simpler one-directional MasterPort and SlavePort interfaces are added which
are directly derived from SystemC’s sc interface, instead of using the Message-
Box class provided in OCCN. In addition, a protocol data unit for router-based
interconnects is added.
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The class declaration of the Pdu class template is shown in Listing A.1 in Appendix
A. The class declarations of the MasterPort interface is shown in Listing A.2 in
Appendix A. This class specializes the MasterInterface class which in turn inherits
from the MessageBox class. The class declaration of the SlaveInterface is more or
less the same.

2. Communication layer
This layer is implemented as a set of C++ classes derived from SystemC’s sc channel.
The communication channel then handles transactions between its different ports
according to the communication protocol supported by a specific NoC. The OCCN
distribution package provides a bidirectional point-to-point channel and a generic
bus interconnect on this layer. In the modified library of this thesis the follow-
ing components are added: a uni-directional point-to-point channel, router-based
NoC interconnect (configurable mesh network) and a specialized bus interconnect
(AMBA AHB 2.0 Bus).

The class declarations of a generic router and Mesh NoC are shown below in Listing
4.1 and Listing 4.2.

template <typename MDataUnit , typename SDataUnit >

class Router : public sc_module {

public:

Router(sc_module_name name , unsigned int _id);

Router(sc_module_name name , unsigned int n_master ,

unsigned int n_slave , unsigned char alg_type , unsigned int _id);

UMasterPort <MDataUnit ,SDataUnit > *master_port;

USlavePort <SDataUnit , MDataUnit > *slave_port;

SendingUnit <MDataUnit > ** sending_unit;

ReceivingUnit <SDataUnit > ** receiving_unit;

SoCInfo socinfo;

int east , west , south , north;

SC_HAS_PROCESS(Router );

sc_in <bool > clock;

private:

unsigned char algorithm_type;

unsigned int num_of_masters;

unsigned int num_of_slaves;

unsigned int id;

unsigned int buffer_size;

unsigned int xDimension;

unsigned int yDimension;

void routingProcess ();

void createConnections ();

void setDirections ();

};

Listing 4.1: A Generic Router Model
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template <typename MDataUnit , typename SDataUnit >

class Mesh : public sc_module {

public:

Mesh ();

~Mesh ();

Mesh(sc_module_name name , unsigned int xDim , unsigned int yDim ,

unsigned int in_buffer_size , unsigned int out_buffer_size );

Router <MDataUnit , SDataUnit > ** router;

PPLink <MDataUnit ,SDataUnit > ** pplink;

PPLink <MDataUnit ,SDataUnit > ** pplink_ti;

USlavePort <SDataUnit ,MDataUnit > *slave_port;

UMasterPort <MDataUnit ,SDataUnit > *master_port;

sc_in <bool > clock;

private:

unsigned int xDimension;

unsigned int yDimension;

unsigned int inBufferSize;

unsigned int outBufferSize;

};

Listing 4.2: 2D Mesh NoC Model

Figure 4.7 shows the hierarchical class library of the communication API and
communication layer components. Components in darker yellow are from SystemC
library. Whereas components in red color are part of the Communication API and
components in blue are part of the Communication Layer.

4.2.2 Models of Other Components

Even though the communication API and communication layer form the core of the
library, system level modeling can not be brought to life without models of additional
components that form the entire SoC such as processing elements, transaction interfaces,
memory and other peripherals. The OCCN package does not provide such items. Hence,
for the demonstration applications (Chapter 6) all of them are created from scratch.

4.2.2.1 Processing Elements

Processing elements represent IPs with software program execution capabilities. It in-
cludes general purpose processors, reconfigurable processing cores as well as DSP cores.
Figure 4.8 shows the model of a single processor along with the set of software processes
mapped to it.

The model comprises a set of buffers, dedicated sending and receiving SystemC processes
for each port, a SystemC computation process and a set of software processes which are
mapped on the processing element. The software processes themselves comprise a set of
tasks as discussed in section 4.4. Each task should be written in such a manner that it
does not need any additional input in the middle of execution (data-independent input
behaviour). An example of a process written as a set of tasks is shown in Appendix A
in Listing A.4. The computation SystemC process is responsible for scheduling these
tasks, checking their firing conditions and then firing them. Each software process has
a set of input and output buffers dedicated to it. Listing A.3 in Appendix A shows
the framework of the class declaration of processing elements. This class declaration is
used in the modeling of all processing elements in the demonstration application. This
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Figure 4.7: Hierarchical class library of the communication layer and API
components

provides great help for design automation as instances of different processing elements
can be instantiated on the fly at runtime by reading parameters from a configuration
file.

4.2.2.2 Transaction Interfaces

Transaction interfaces provide the necessary transaction adaptation between processing
elements and the underlying communication infrastructure. The transaction interface
model shown in Figure 4.9 has two interface sides: one to the processing elements and
another one to the interconnection network. This means a change in the interconnec-
tion network can be made during architectural analysis without affecting the already
constructed processing elements by just changing the interfaces on the network side of
the transaction interfaces. The transaction interfaces can be mapped to communication
interfaces such as Bus Interface Units (BIU) and Network Interfaces (NI) in the actual
SoC hardware.



38 4.3. Building the Virtual Platform

Outgoing 
buffer 0

Outgoing 
buffer 2

Outgoing 
buffer 1

SystemC
Sending
process

SystemC
Sending
process

Incoming 
buffer 0

Incoming 
buffer 1

SystemC
Receiving
process

SystemC
Receiving
process

SystemC
Computation process

Application 
Process 0

Application 
Process 1

Uni-directional 
Master ports

Uni-directional
Slave ports

SystemC
Sending
process

Figure 4.8: Model of a processing element

4.2.2.3 Memory

Memory is modeled as an array of bytes with given read/write delays. Listing B.2 shows
the class declaration of a simple memory model used for the demonstration applications.

4.3 Building the Virtual Platform

Now we have enough components in our library to build the virtual platform of the
SoC. By properly instantiating and connecting all the needed SoC components such as
processing elements, transaction interfaces and interconnection links the desired SoC
platform can be built. An example of such a platform is shown in Figure 4.10.

In this platform the processing elements are connected by a point-to-point unidirectional
links to a network box, which is introduced for the sake of an efficient hierarchical design.
The transaction interfaces go between every processing element and the interconnection
network which is a simple hierarchical bus network. What is left now for full system
simulation is the modeling of the software processes which will be discussed in next
section.

4.4 Modeling Software Applications

Software applications which are going to run on the SoC platform should be partitioned
and mapped on processing elements before full system simulation is possible. Each
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Figure 4.9: Model of a transaction interface

partition of a software application is termed as a process. Multiple processes might be
mapped on a given processing element. Therefore, scheduling should be done to arbitrate
the execution of processes. The processing element model discussed in section 4.2.2.1 has
the computation SystemC process for this purpose. This is a SystemC SC METHOD
process that implements the scheduling and firing of processes based on preset conditions.
Processes are fired only if they have sufficient input data to process. Scheduling the firing
of processes can be difficult if they have variable input data lengths. In this thesis work
an approach is devised that enables easier scheduling of such processes by splitting a
given process of variable input length and re-modeling it as a set of tasks where each of
these tasks are of fixed input length. In this approach, each software process is a class
instance with a set of states where each state represents a given task. The class definition
comprises state variables, the main computation function and other supportive functions.
The skeleton of the implementation of such a state machine is shown in Listing 4.3. In
this example listing, the state of the process are stored in five state variables: int state,
cvec fineSyncBuffer, cvec ofdmFrameBuffer, uchar mode and std::complex<double> tempSample. The
main function called to fire the process is synchronize. In addition three support functions
are included in it: estimateFineOffsets, estimateCoarseFrequencyOffset and correctFrequencyOffset.

During each firing, a process depending on its state consumes some input data from
its input buffers (which are the arguments of the main function), manipulates its state
variables, writes output data and gives control back to the computation SystemC process.
This execution process is shown in Figure 4.11.
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Figure 4.10: An instance of a SoC platform

4.5 System Level Design Flow

In the previous four sections, we have covered all the necessary ingredients we need
for system level modeling of multi-core systems. Now we can see how these different
ingredients come together and form a TLM-based system level modeling and simulation
framework. Figure 4.12 shows the design process to follow to incorporate system level
modeling in the SoC design flow for three main use cases: virtual platform for early
software development, fast architectural analysis and functional verification.

The design flow begins with two separate processes: building the virtual platform as
discussed in section 4.3 and modeling the software applications as set of processes with
the necessary data dependency between them as discussed in section 4.4. Based on an
externally developed mapping rule, the integration of the software applications and the
virtual platform proceeds. There are two different possibilities for the modeling and
simulation of the system at different levels of abstractions. The first alternative is to
model the virtual platform so that it can support the different abstraction levels all
together. In this case a configuration file is needed to change parameters so that the
system can be simulated at different abstraction levels. The second option is to prepare
separate virtual platforms for each abstraction level and select the desired platform
during integration. The advantage of the first approach is that it enables multiple
abstraction level simulations at reduced design effort. However, it introduces certain level
of complication during implementation. On the other hand, the second alternative has
the opposite effect in terms of design effort and implementation complexity. Automating
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class Process0 {

private:

// state variables

int state;

cvec fineSyncBuffer;

cvec ofdmFrameBuffer;

uchar mode;

std::complex <double > tempSample;

public:

Process0 ();

// these are additional support functions

void estimateFineOffsets(cvec &samples ,

uchar mode , uint &timingOffset , double &frequencyOffset ){

...

}

int estimateCoarseFrequencyOffset(cvec &samples , uchar mode){

...

}

cvec correctFrequencyOffset(cvec &samples ,

uchar mode , double &frequencyOffset ){

...

}

// this is the main computation function

// the input arguments are the input and output buffers

void synchronize(QueueObject <double > &fine_frequency_offset ,

QueueObject <uchar > &mode_received ,

QueueObject <cvec > &sampleBuffer ,

CQueueObject <std::complex <double > > &adc_samples ,

QueueObject <cvec > &to_ofdm)

{

switch(state){

case 0:

...

break;

case 1:

...

break;

...

default:

...

}

}

};

Listing 4.3: A skeletal implementation of processes as a state machine

the design flow can be an effective solution for these two contradictory concerns. The
virtual platform building phase and the integration of the application with the platform
can be automated and achieve significant design effort reduction.

4.6 Summary

In this chapter, a methodology for TLM-based system level modeling and simulation is
presented. The core components of the methodology are the defined abstraction lev-
els, the developed library and the integration strategies. The defined abstraction levels
are Functional Model, Process Model, Transfer-based System Level Model, Phase-based
System Level Model, Protocol-specific System Level Model and Implementation Model.
Each of them has a set of distinct features and use cases. The library used for the ex-
perimentation of the design methodology is the OCCN’s open-source package. Different
modifications and additions were made to the library to make it fit for the intended
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purpose. In addition to communication APIs and channels, models of processing ele-
ments, transaction interfaces and memory are added to the library to enable complete
SoC modeling. The system level design flow using the discussed methodology starts
by building a virtual platform using components from the developed library. The soft-
ware applications are then partitioned into processes and the data dependency between
the processes is figured out. These two entities are finally integrated based on a given
mapping and simulated at the desired level of abstraction.



Chapter 4. Methodology for TLM-based System Level Modeling 43

G
P

P
M

o
n

ti
u

m
-0

M
o

n
ti

u
m

-1

M
e

m
o

ry
S

m
ar

t 
M

e
m

o
ry

 
T

ile
A

D
C

A
M

B
A

 A
H

B
 B

u
s

A
M

B
A

 A
P

B
 B

u
s

A

B

C

0

1
2

3

5
4

I
II

G
P

P
M

o
n

ti
u

m
-0

M
o

n
ti

u
m

-1

M
e

m
o

ry
S

m
ar

t 
M

e
m

o
ry

 
T

ile
A

D
C

A
M

B
A

 A
H

B
 B

u
s

A
M

B
A

 A
P

B
 B

u
s

M
ap

p
in

g

A
II

5

B

I
0

1

2

C
4

C
L

P
L

T
L

U
T

T
ra

n
sf

e
r-

b
as

e
d

 S
ys

te
m

 
Le

ve
l M

o
d

e
l (

T
S

LM
)

C
R

L-
0

C
R

L-
1

C
R

L-
2

A
B

C
CD

D

E
F

A B C D E F

Fu
n

ct
io

n
al

 M
o

d
e

l

P
ro

ce
ss

 M
o

d
e

l

P
h

as
e

-b
as

e
d

 S
ys

te
m

 L
e

ve
l 

M
o

d
e

l (
P

S
LM

)

P
ro

to
co

l-s
p

e
ci

fi
c 

S
ys

te
m

 
Le

ve
l M

o
d

e
l

Im
p

le
m

e
n

ta
ti

o
n

 M
o

d
e

l

C
o

m
m

u
n

ic
at

io
n

Computations

T
LM

A
p

p
lic

at
io

n
 s

o
ft

w
ar

e
A

rc
h

it
e

ct
u

re
 s

p
e

ci
fi

ca
ti

o
n

S
ys

te
m

 in
te

g
ra

ti
o

n

S
ys

te
m

 s
im

u
la

ti
o

n
 a

t 
va

ri
o

u
s 

ab
st

ra
ct

io
n

 la
ye

rs

Figure 4.12: TLM-based System Level Design Flow





Chapter 5

Demonstrations- DAB Receiver
and AMBA AHB Bus

In the previous chapter, a system level modeling approach is presented that uses TLM
as a central communication approach. In this chapter, two demonstration applications
are discussed to show the usage of the methodology. The first demonstration is a digital
radio receiver streaming application (also called the DAB receiver) and the second one is
an AMBA AHB bus system with random traffic generators. Section 5.1 and section 5.2
discuss the modelings of the DAB receiver and the AHB bus-based system, respectively.
The chapter concludes finally with a summary of the main issues covered in the chapter.

5.1 DAB Receiver

Before discussing the implementation of the DAB receiver demonstration application, the
following subsection introduces the DAB standard and the DAB transmission-reception
system.

5.1.1 Digital Audio Broadcasting(DAB) Standard

Digital Audio Broadcasting (DAB), is a digital radio technology for broadcasting radio
stations, used in several countries, particularly in Europe. There are now over 1000 dif-
ferent DAB receivers commercially available. 30 countries have regular DAB services on
air, and more than 12 million DAB receivers have been sold worldwide [27]. DAB allows
for a much more efficient use of frequency spectrum than traditional analogue radio.
Instead of just one service per frequency as is the case on FM (Frequency Modulation),
DAB permits up to nine (or more) services on a single frequency. Proponents also claim
the standard, which has gone through different revisions since its first draft in the 1980s,
offers several benefits over existing analogue FM radio, such as increased resistance to
noise, multipath fading, and co-channel interference.

An upgraded version of the system was released in February 2007, which is called DAB+.
DAB+ is designed to provide the same functionality as the original DAB radio, though
not backward compatible with it. DAB+ is more efficient than DAB mainly because of

45



46 5.1. DAB Receiver

the AAC+ (MP4) audio codec it uses. This allows equivalent or better subjective audio
quality to be broadcast at lower bit rates than DAB.

DAB is also used as physical layer for DMB (Digital Multimedia Broadcasting), which
is a video and multimedia broadcasting technology [28]. DMB offers a wide range of
new innovative services, such as mobile TV, traffic and safety information, interactive
programmes, data information and many other applications. Since DMB is based on the
globally used digital audio broadcasting (DAB) core standard, DMB devices are always
backwards compatible and can receive not only DMB multimedia services but also DAB
audio services [28].

5.1.2 DAB Transmission/Reception System

Figure 5.2 shows the generation of the DAB signal from the transmission side. The
transmission system has three main units: multiplexer, channel encoder and OFDM
signal generator. The multiplexer merges multiple service signals ,which are individually
coded and error protected at source level, and multiplex control and service information
which travel in the Fast Information Channel (FIC). The output of the multiplexer is
then block partitioned, QPSK symbol mapped and frequency interleaved in the channel
encoding process. Finally, Orthogonal Frequency Division Multiplexing (OFDM) is
applied to shape the DAB signal, which consists of a large number of carriers. The signal
is then transposed to the appropriate radio frequency band, amplified and transmitted.
Figure 5.1 shows the transmission mode independent description of DAB transmission
frame. In time domain the DAB signal is made up of such transmission frames which
are of 24 ms duration. The frame is composed of 154 symbols. Each frame begins with
the null symbol for coarse synchronisation of receivers and the phase reference symbol
for fine synchronisation. These two symbols form what is called the Synchronization
Channel. The Synchronization Channel is followed by Fast Information Channel (FIC)
which has 8 symbols to mainly carry the Multiplex Configuration Information (MCI).
Following is the Main Service Channel (MSC) that comprises 144 symbols. The MSC is
futher divided into sub-channels and each sub-channel carries audio data of a particular
service, coded using the MPEG Layer I standard.

Figure 5.3 demonstrates a conceptual DAB receiver. It performs more or less the reverse
of the transmission process to extract the multiple audio and data services encoded in
the received DAB frames.

Details of DAB can be obtained from [29], [30] and [31].

5.1.3 DAB Receiver Architecture

The hardware architecture of the DAB receiver used in the experimentation of this
thesis is taken from the DAB/DAB+/DMB receiver project at Recore Systems [32].
This architecture is shown in Figure 5.4. The main components of the SoC are a general
purpose processor (e.g. ARM processor), two Montium processors, SRAM memory and
different GPIO (General Purpose Input/Output) units.

The architecture modeling focuses on the ARM processor, the two Montium processors,
the smart memory tile, the SRAM memory and the ADC (analog-to-digital converter).
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Figure 5.1: Transmission mode independent description of the FIC and MSC (source:
DAB standard [30])

Figure 5.2: Generation of DAB Signal (source: WorldDMB forum [29])

The other I/O interfaces and components are not included. Different interconnection
networks are modeled other than the hierarchical bus interconnect shown in the figure.

5.1.4 Software Architecture

The functional blocks of the DAB receiver application software is shown in Figure 5.5.
The application reads a received DAB stream file and produces an audio output. The
first three blocks: Mode detection, Synchronization and OFDM correspond to the OFDM
Demodulator block shown in Figure 5.3. Whereas the remaining three blocks: De-
multiplexer, Channel Decoding and Source Decoding correspond to the Packet Demux,
Channel Decoder and Audio Decoder blocks respecitvely.
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Figure 5.3: Generation of DAB Signal (source: WorldDMB forum [29])
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Figure 5.4: DAB/DAB+/DMB receiver architecture: (source: Recore Systems DAB
receiver project [32])

In the implementation, the DAB receiver application is partitioned into eight separate
processes. The data dependency graph of these eight processes is shown in 5.6.

Here is a brief description of each of these processes.

• ADC : This process reads data from the input stream file and sends them either
to the Mode detection or Synchronization process depending on its state.



Chapter 5. Demonstrations- DAB Receiver and AMBA AHB Bus 49

Mode Detection

Time-Phase-
Frequency 

Sysncronization
OFDM

Demultiplexer/ 
Deinterleaver

Channel 
Decoding (Viterbi 
Decoding, Energy 

Descrambling)

Source Decoding 
(MPEG 

Decoding)

Received 
DAB Stream 

File
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Figure 5.6: data dependency graph of the software functional blocks

• Mode detection DAB transmission can be carried out in four different modes.
Each mode of transmission has its own frame structure. The Mode detection pro-
cess recognizes the mode of transmission of the received DAB stream by comparing
the length of the null symbol that separates consecutive frames.

• Controller: This process controls the Channel decoding and Source decoding pro-
cesses by supplying the sub-channel parameters based on the user’s program se-
lection.

• Synchronization: DAB transmission frames have a synchronization channel (see
Figure 5.1) which contains the Null Symbol and Phase Reference Symbol (PRS).
The Null Symbol contains nothing and has a much lower energy. Its length is
used by the Mode detection process to identify the mode of transmission of the
DAB signal. On the other hand the PRS is used for phase, time and frequency
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synchronization of the receiver. Frequency synchronization is needed to balance
out local oscillator offsets and time synchronization is needed to avoid incorrect
position of FFT window.

• OFDM: The OFDM process carries out frequency offset correction based on the
offset information obtained from the Synchronization process, performs the QPSK
and OFDM demodulations.

• Demultiplexing/Deinterleaving: This process is responsible for the time dein-
terleaving and demultiplexing of subchannels.

• Channel decoding: carries out the Viterbi decoding process.

• Source decoding: performs the MPEG/AAC audio decoding process and pro-
duces the output audio file.

5.1.5 System Level Modeling of the DAB Receiver SoC

This section discusses the implementation of the DAB receiver system at three different
abstraction layers; FM, PM and TSLM. The discussions include the features of the
models and the achieve simulation speeds.

5.1.5.1 Functional Model

The Functional model (FM) (section 4.1.4.1) is the concurrent simulation of multiple
processes for simple functionality check. Functional correctness of various partitioning
options can be tried out. It is also the entry point to the lower abstraction layers. Below
here are the main features of this model.
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oller

Transaction 
Interface

Synch

Transaction 
Interface

OFDM

Transaction 
Interface

Demux
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Decoder

Transaction 
Interface

Receiver

Transaction 
Interface

Figure 5.7: Functional Model

• Eight processes, each mapped on a separate SystemC module (processing element).
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• Modules are connected by point-to-point links of different data widths as shown
on the data dependency graph in Figure 5.6.

• Processes have infinite input/output buffers.

• Processes are modeled as a set of tasks (states) each with specific firing conditions.

• No execution or transmission delays are introduced in the simulation.

The simulation time of the DAB receiver at the FM level is shown in Table 5.1 for an
input DAB stream of size 102MB.

Table 5.1: Simulation time at FM level
Simulated time 491,417,950 ns
Real time 201 sec
Simulation speed 2,443,042 ns/sec

5.1.5.2 Process model

The Process model(PM) (Section 4.1.4.2) evolves from the Functional model by the
introduction of mapping, scheduling and buffer size decisions. The designer can probe
latency, throughput and size statistics at different points in the model to analyse various
design decisions. Main features include:

• Eight processes mapped on five processing elements and processing elements with
multiple processes are scheduled in a static round-robin manner.

• Processes mapped on the same processing element communicate through a shared
memory.

• Processes mapped on different processing elements communicate through point-
to-point links like FM.

• Processes are provided with fixed input/output buffer sizes.

• Estimated process execution delays are introduced in the processing elements.

The simulation time for the system at the PM model is shown in Table 5.2 for an input
file size of 102MB. The system has a clock period of 10ns. Hence the simulation speed
is in the order 106 cycles/sec.
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Figure 5.8: Process Model

Table 5.2: Simulation time at PM level
Simulated time 188,686,320 ns
Real time 106 sec
Simulation speed 1,771,037 ns/sec

5.1.5.3 Transfer-based System Level Model

The Transfer-based system level model (Section 4.1.4.3) gives a more realistic virtual
platform because in addition to the mapping, scheduling and memory size decisions
taken in the Process model, decisions are taken on the topology of the interconnection
network and implementation of memory.

This is an appropriate abstraction level to model a virtual platform for software de-
velopment since it incorporates all basic architectural details and still maintains fast
simulation speed. Main features of the above models at TSLM level include:

• It has the same features as PM in terms of mapping, scheduling, memory size and
process execution delay.

• Decision on the topology of the interconnection network is taken as shown in the
figures. A flat single layer bus and 3x2 mesh NoC are used in the experimentation.

• Transactions over the interconnection network are not visible except at the start
and end of the transaction.
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Figure 5.9: Transfer-based system level model with bus interconnect
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The simulation time for the DAB receiver system at the TSLM level is given in Table
5.3 for bus and mesh interconnection networks for an input DAB stream size of 102MB.
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Table 5.3: Simulation time at TSLM level
Bus Mesh

Simulated time 491,417,950 ns 880,122,250 ns
Real time 211 sec 686 sec
Simulation speed 2,327,340 ns/sec 1,282,977 ns/sec

5.2 High-level AMBA AHB 2.0 Bus

The second demonstration application is the implementation of a high level AMBA AHB
bus at two refinement levels: Transfer level (TL) and Phase Level (PL). This section
presents the implementation details of the high level AHB bus models as well as the
experimental setup used to analyse their use.

5.2.1 AMBA Bus Protocol

The AMBA bus protocol [33] is one of the most popular bus communication networks
used in today’s embedded system designs. Since its first introduction in 1995, the AMBA
Specification has been refined and extended with additional protocol support to provide
the capabilities required for SoC design. The two key versions are the AMBA 2.0 and
AMBA 3.0 standards.

The goal of AMBA version 2.0 is to provide a flexible high performance bus architec-
ture specification, that is technology independent, takes up minimal silicon area, and
encourages IP reuse across designs. This version defines three distinct bus standards:
AHB, ASB and APB. Advanced high performance bus (AHB) is a high performance
bus meant to connect high bandwidth, high clock frequency components such as proces-
sors, DMA controllers, off-chip memory interfaces, and high bandwidth on-chip memory
blocks. Advanced system bus (ASB) is a scaled-down alternative to the AHB bus which
targets to connect high clock frequency components that do not need the advanced
protocol features of AHB. The Advanced peripheral bus (APB) is a low complexity bus
optimized for low power operation which is intended for high latency, low bandwidth pe-
ripheral components such as timers, UARTs, user interface (e.g. keyboard) controllers,
etc. Figure 5.11 shows what a typical AMBA-based system looks like.

The AMBA 3.0 bus architecture specification introduces the Advanced eXensible In-
terface (AXI) bus that extends the AHB bus with advanced features to support high
performance MPSoC designs. AMBA AXI is backward compatible with AHB and APB,
and has key features such as separate address/control and data phases, support for un-
aligned data transfers using byte strobes, burst-based transactions with only start ad-
dress issued, separate read and write data channels to enable low-cost Direct Memory
Access (DMA), ability to issue multiple outstanding addresses, out-of-order transaction
completion and easy addition of register stages to provide timing closure.

Other AMBA specifications intended for high bandwidth operations include AHB-lite
which supports a single-bus master and multi-layer AHB that allows for parallel access
paths between multiple masters and slaves in a system.
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Figure 5.11: Typical AMBA-based System (source: AMBA 2.0 Specification)

We selected the AMBA AHB 2.0 standard to demonstrate the use of the modeling
methodology presented in the previous chapter. The next three sections respectively
discuss the AHB 2.0 standard, the implementation of the high level bus models and the
experimentation set-up.

5.2.2 AMBA AHB 2.0 Standard

AMBA AHB 2.0 has the features required for high-clock frequency and high performance
systems. The features include burst transfers, split transactions, single-cycle bus master
handover and wider data bus configurations.

A typical AMBA AHB system has AHB masters, AHB slaves and the bus arbiter. Each
bus signal is controlled by either of these components. Table 5.4 and 5.5 show the
complete list of AHB bus signals.
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Table 5.4: AMBA AHB Signals

Name Source Remark

HCLK Bus clock clock source

HRESETn Reset Reset Con-
troller

active LOW and is used to re-
set the system and the bus

HADDR[31:0] Address Bus Master the 32-bit system address bus

HTRANS[1:0] Transfer Type Master can be BUSY, IDLE, SEQ or
NONSEQ

HWRITE Transfer Direc-
tion

Master LOW for read, HIGH for write

HSIZE[2:0] Transfer Size Master beat size(8-1024 bits)

HBURST[2:0] Burst Type Master eight types including four,
eight, sixteen incremental or
wrapping bursts

HPROT[3:0] Protection Con-
trol

Master tells if transfer is opcode or
data fetch, cacheable, buffer-
able, user mode or privileged
mode

HWDATA[31:0] Write Data Bus Master extendable upto 1024 bits

HSELx Slave Select Decoder

HRDATA[31:0] Read Data Bus Slave extendable upto 1024 bits

HREADY Transfer Done Slave When HIGH, HREADY sig-
nal indicates that a transfer
has finished on the bus

HRESP[1:0] Transfer Re-
sponse

Slave OKAY, ERROR, RETRY or
SPLIT

An AHB transfer consists of two phases: an address phase which lasts only one cycle
and the data phase which may require one or more cycles. Since the address and the
data phase of a transaction occur at separate clock cycles, pipelining is usually done by
driving the address of the next transaction in parallel with the data phase of the current
transaction. The number of cycles for the data phase depends on the burst type and
the slave’s waiting cycles. The HTRANS signal of the first beat of every transaction has
the NON-SEQUENCE value and the remaining sequence of beats have the SEQUENCE
value. For beats whose HTRANS has the value of SEQUENCE, the slave computes
the transaction address based on the address in the first beat and whether the burst
is incremental or wrapping. The burst transaction can be terminated early if the slave
received a beat with HTRANS value of NON-SEQUENCE.
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Table 5.5: AHB Arbitration Signals
Name Source Remark

HBUSREQx Bus Request Master indicates that the bus master
requires the bus

HLOCKx Locked Transfers Master When HIGH this signal in-
dicates that the master re-
quires locked access to the bus
and no other master should be
granted the bus until this sig-
nal is LOW.

HGRANTx Bus Grant Arbiter indicates that bus master x is
currently the highest priority
masters

HMASTER[3:0] Master Number Arbiter indicate which bus master is
currently performing a trans-
fer and is used by the slaves
which support SPLIT trans-
fers to determine which mas-
ter is attempting an access.

HMASTLOCK Locked Sequence Arbiter Indicates that the current
master is performing a locked
sequence of transfers

HSPLITx[15:0] Split Completion
Request

Slave
(SPLIT
capable)

used by a slave to indicate
to the arbiter which bus mas-
ters should be allowed to re-
attempt a split transaction

Readers who are interested for the complete specification of the AMBA bus can freely
download the official documentations from ARM’s website [33].

5.2.3 Implementation

This section discusses how the high level model of the AMBA AHB 2.0 bus is imple-
mented using the methods discussed in the previous chapter. The implementation has
two main components: the protocol data units and the bus process.

1. Protocol data units: As discussed in Section 4.2.1, all transactions between
masters and slaves are carried out using the protocol data units. The implemen-
tation of the protocol data units for the AHB bus is based on OCCN’s Pdu class
template. By defining the data structures for the header field ( also called Protocol
Control Information -PCI) and data field (also called Service Data Unit - SDU),
the Pdu class template can be specialized as protocol data unit of a particular
protocol. For the AMBA AHB bus, two PCI fields are defined: AHB MasterCtrl
and AHB SlaveCtrl, for the master and slave controlled bus signals respectively.
Listing 5.1 shows the definition of these header fields.

The SDU field which holds the actual data can be of any size by specifying the BH
and size template parameters of the Pdu class template. Instantiation of protocol
data units for AHB transactions looks like as shown in Listings 5.2.

2. Bus Process: The AMBA AHB bus is implemented by adding the necessary
modifications to the generic bus in the OCCN’s library. During the elaboration
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enum Transfer_type{IDLE , BUSY , NONSEQ , SEQ};

enum TransactionDirection{READ , WRITE};

enum SlaveResponse{OKAY , ERROR , RETRY , SPLIT };

enum BurstType{SINGLE=0, INCR=1, WRAP4=4, INCR4=5,

WRAP8=8, INCR8=9, WRAP16 =16, INCR16 =17};

enum BeatSize{ERROR_BS=0, BYTE=1, HALFWORD=2,

WORD=4, _2WORDLINE =8, _4WORDLINE =16,

_8WORDLINE =32, _16WORDLINE =64, _32WORDLINE =128};

class AMBA_AHB_MasterCtrl

{

public:

N_uint32 HADDR;

TransferType HTRANS;

TransactionDirection HWRITE;

BeatSize HSIZE;

BurstType HBURST;

N_uint8 HPROT;

bool HBUSREQ;

bool HLOCK;

//non -real signals

N_uint8 priority; // for arbitration

};

class AMBA_AHB_SlaveCtrl

{

public:

bool HREADY;

SlaveResponse HRESP;

N_uint16 HSPLIT;

};

Listing 5.1: Master and Slave PCIs for AMBA AHB

// Pdu instances for masters

typedef unsigned int N_uint32;

Pdu <AMBA_AHB_MasterCtrl , N_uint32 , 16> pdu_to_send;

Pdu <AMBA_AHB_SlaveCtrl , N_uint32 , 16> pdu_to_receive;

// Pdu instances for slaves

Pdu <AMBA_AHB_SlaveCtrl , N_uint32 , 16> pdu_to_send;

Pdu <AMBA_AHB_MasterCtrl , N_uint32 , 16> pdu_to_receive;

Listing 5.2: Master and Slave pdu instances

phase of the SystemC simulation, all the slaves and masters are connected and ad-
dress ranges are registered. During the execution phase, the bus process runs until
the end of simulation. The implementation of the process depends on the commu-
nication refinement level of the bus. For TL and PL models, the bus process is a
SystemC SC THREAD process and for SL model it is a SystemC SC METHOD
process. The bus process for the TL model is the same as the one in the OCCN’s
generic bus. The flow chart in Figure 5.12 shows the SystemC SC THREAD pro-
cess for the PL model. The complete source code for of the AHB PL bus process
is available in Listing B.1 in Appendix B.



Chapter 5. Demonstrations- DAB Receiver and AMBA AHB Bus 59

start

initiator_id=-1
target_id=-1

num_phases=2

enable writing and 
reading events

initiator_id=
arbitrate_masters()

get the Pdu to 
transfer

target_id=
decode_address()

read burst_type & 
transfer_type

burst_type
=

INCR?

beat_counter < 
num_of_beats ?

beat_counter
=
1?

Get the next Pdu

Transfer_type
=

SEQ?

Increment beat_counter

end of simulation?

End

send Pdu from master to 
slave

wait master write and 
slave read events

phase=
init_phase?

more transactions?

No

Yes

No

Yes

Yes

No

YesNo

No Yes

No
Yes

Yes

No
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5.2.4 Experimentation

To investigate the usage of the TL and PL AHB bus models, an experimental set up is
built that comprises traffic generators as initiators, memories as targets and a configu-
ration file to specify system parameters.

1. Configuration file: The configuration file is used to specify system parameters
such as the abstraction layer, number of initiators, number of targets and parame-
ters for each initiator and target. Listings 5.3 shows an example of a configuration
file that specifies a system of two initiators and one target that uses the TL AHB
bus.

2. Traffic Generator: The traffic generator randomly initiates transactions of dif-
ferent types based on parameters specified in the configuration file. Handling of
transactions varies between TL and PL models. For TL model, every beat of the
burst is packed into a single protocol data unit and sent in one transfer. In ad-
dition, there is no separate initialization and data phases. This makes simulation
in the TL model faster. For the PL model, however, separate data unit is pre-
pared for each beat in the burst and the transfer of each beat is completed in two
separate phases. However, separate timing information can be extracted for each
beat of the burst and for each phase of the beat transfer. For the AHB 2.0 bus
with possible data width range between 32 and 256 bits, a total of 96 different
transaction types are identified: two transaction directions (WRITE or READ),
eight burst types (SINGLE, INCR, INCR4, WRAP4, INCR8, WRAP8, INCR16
and WRAP16) and six beat sizes (BYTE, HALF WORD, WORD, 2WORD LINE,
4WORD LINE and 8WORD LINE). Figure 5.13 and 5.14 show the message se-
quences for write and read transactions in the TL model. As shown in the figures,
the timing information that can be obtained from the TL model is limited to the
duration of the whole transaction.
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# Abstraction layer

abs_layer = PL # abstraction layer (options: TL, PL, SL)

# System Parameters

num_initiators= 2 # number of initiators (traffic generators)

num_targets = 1 # number of targets (memories)

comm_network = bus # communication network type (eg: bus , mesh ,)

# Communication network parameters

bus_protocol = AMBA AHB 2.0 # the specific bus protocol to use

bus_width = 32 # the bus width in bits

bus_lite = false # the bus type - normal vs lite versions

num_layers = 1 # single layer vs multi -layer options

arbitration = SP # arbitration (options: SP, RR, TDMA)

split_support = false # the bus support split transactions

# Target parameters

target0_parameters= 4000 # address space size: 16 kb

0000 # target0 starting address

3fff # target0 ending address

3 # byte read latency - clock cycles

2 # byte write latency - clock cycles

# Initiator parameters

initiator0_traffic_type =

60 40 # write percentage & read percentage

20 20 60 0 0 0 # byte , half_word ,...,8 wordline percentages

30 0 40 20 10 # single , incr ,..., burst16 percentages

10000 115fff # number of transactions , maximum address

initiator1_traffic_type =

15 85 # write percentage & read percentages

25 35 40 0 0 0 # byte , half_word ,...,8 wordline percentages

20 0 10 30 40 # single , incr ,..., burst16 percentages

48000 115fff # number of transactions , maximum address

#Screen display

print_config = true # to show the configuration parameters

print_screen = false # to show simulation data on screen

Listing 5.3: Example Configuration File

Figure 5.15 shows the message sequence for both write and read transactions in
the PL model. As shown in the figure, timing information can be obtained for each
phase of every beat in the burst. The duration of each phase emphasizes a certain
aspect of the communication protocol. For instance, the initialization phase spans
the duration from the point where the master forwards a request to the bus until
the slave replies its readiness for the transaction. This duration is mainly occupied
by the arbitration delay of the master and the slave overhead (the waiting time
before a slave is ready for the transaction). The data phase is also determined
by the propagation delay, slave’s transaction processing delay as well as the slave
overhead.
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Initiator Target

Send Pdu

Receive Pdu

Reply

Transaction start

Transaction end

Transaction 
duration

Arbitration
 delay

Target overhead and
propagation delay

Target transaction 
processing delay

Figure 5.13: Message sequence of TL model write transaction
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Transaction 
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Receive Pdu 
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Figure 5.14: Message sequence of TL model read transaction
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Figure 5.15: Message sequence of PL model write and read transactions

3. Memory: A simple flat-array memory is used as target in the experimentation
set up. The class declaration of the target memory is shown in Listing B.2 in
Appendix B.

An example system that comprises three initiators and one target is shown in Figure
5.16. In this system initiator-0 is an ADC unit that has a sampling rate of 1 Mhz. The
parameters for the three initiators are shown in Table 5.6.

Table 5.6: Initiators’ parameters for the example AMBA system shown in Figure 5.16
Parameters Initiator-0 Initiator-1 Initiator-2
Transaction direction ratio (write,
read)

100, 0 25, 75 45, 55

Burst type ratio (SINGLE, INCR,
burst4, burst8, burst16)

100, 0, 0, 0, 0 30, 0, 20, 20, 30 15, 0, 15, 20, 50

Beat size ratio (BYTE,
HALF WORD, WORD)

100, 0, 0 20, 15, 65 10, 30, 60

Total transaction size (bytes) 196k 64k 64k
Transactions gap ( nsec) 1000 random 100-1000 random 100-1000
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Initiator-0 Initiator-2Initiator-1

AMBA AHB Bus

Target-0
(Memory)

#Target-0 Parameters

4000    #Target address space=16 Kb

0000    #Startiing address

3FFF    #Ending address

3       #Line read latency (Clock cycles)

2       #Line write latency (Clock cycles)

Master Interface Slave Interface

Figure 5.16: Example AMBA AHB System

For this system, issues that may be of interest to the designer include the transaction
latency of Initiator-0 (ADC) and the read-write throughput of the memory. In order
to avoid sample misses from the ADC, the maximum transaction latency should be less
than the transaction gap which is the sampling period of the ADC (1000 nsec). Figure
5.17 shows the obtained latency for the first 100 transactions for the AMBA bus in the
TL level which uses a random arbitration scheme (called RD). As shown in the figure,
most transactions have a latency beyond the maximum tolerable latency which is the
ADC’s sampling period. Running the same system with a bus in the 2-phase PL level
discovers that most of this transaction latency is spent during arbitration (Figure 5.18).
By replacing the random arbitration (RD) with a static priority arbitration (SP) that
gives the highest priority to Initiator-0, the transaction latency for the majority of the
transactions can be cut down below the maximum tolerable latency as shown in Figure
5.19.
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Figure 5.17: Initiator-0’s transaction latency of the system shown in Figure 5.16 with
TL level AHB bus and arbitration RD

Figure 5.18: Initiator-0’s transaction latency of the system shown in Figure 5.16 with
PL level AHB bus and arbitration RD
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Figure 5.19: Initiator-0’s transaction latency of the system shown in Figure 5.16 with
TL level AHB bus and arbitration SP

Statistics regarding the write-read throughput of the memory can be obtained using
OCCN’s statistics package that targets the Grace 2D graphing tool. The average read
and write throughputs of the memory are shown in Figures 5.20 and 5.21.

Figure 5.20: Target-0’s average read throughput of the system shown in Figure 5.16
with PL level AHB bus and arbitration SP
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Figure 5.21: Target-0’s average write throughput of the system shown in Figure 5.16
with PL level AHB bus and arbitration SP

5.3 Summary

In this chapter, two demonstrations are discussed to show the usage of the devised system
level modeling methodology. The first one is a digital radio receiver streaming appli-
cation (the DAB receiver). The hardware architecture of the DAB receiver comprises
one general purpose processor, two reconfigurable processors, a smart memory tile and
one ADC unit. The software application is partitioned into eight processes. Since the
software processes have data-dependent behaviour, they are modeled as a set of tasks
(states) where each task has a data-independent behaviour in terms of the amount of
input data it needs for execution. The system is modeled at three different abstraction
levels: FM, PM and TSLM. The second demonstration is the modeling of an AMBA
bus based system that comprises random traffic generators, high level AHB 2.0 bus
and target memories. For each model in both demonstrations, implementation aspects
are discussed, example use cases are shown and the differences from other models are
contrasted. The next chapter discusses the investigation results of the demonstration
models and recommends possible extensions to this thesis work.





Chapter 6

Conclusions and Future works

In this chapter, the key achievements and drawbacks of the work are pointed out and
possible extensions to this work are recommended.

6.1 Conclusions

Developing an efficient system level modeling and simulation framework for multi-core
systems demands a substantial effort. Crafting the design flow, devising the abstraction
concepts and developing the necessary tools and libraries are not sufficient alone. The
method should be tested with a significant set of real applications and results need to be
contrasted with their RTL counterparts to asses the effectiveness of the methodology and
appreciate its benefits. It is not the intention of this work to come up with a complete
set of libraries, tools and undertake an intensive testing. Nevertheless, this thesis offers
a promising groundwork for a SystemC-based modeling and simulation framework for
multi-core systems.

One strong aspect of this work is that it offers an integrated approach. All the ingriedi-
ents needed for the system level modeling of multi-core systems are identified and unlike
other works, discussed in Chapter 3: Related Works, our approach embraces each of
these ingriedients. Defining the abstraction layers without providing any directions on
how that could be implemented leaves the designer on the desert with no clue. Even
offering the communication APIs alone without clear definition of abstraction layers or
use cases may lead to confusions on their usage and raise interoperability issues between
models. Having a complete toolset on the table is the solution for these problems and
that is what this work brings to the system modeling arena.

The approach presented in this work is also able to achieve the main objectives of
system level modeling: reduced complexity and faster simulation. The FM, PM and
TSLM layers abstract away detailed architectural aspects and provide a simpler but
faster virtual platform for early software development. Faster architectural analysis can
also be carried out at the PSLM and PSSLM layers without being irritated by the mind-
blowing protocol and device nitty-gritty details. Despite the considerable effort needed,
the IM layer can be the option to go for functional verification and debugging of the
entire system without indulging oneself into HDL implementations. In addition, with
IM upto a three times faster simulation can be obtained as compared to their HDL
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counterparts. The achieved simulation speed in both demonstration applications, in
the order of 106cycles/sec is within the range of the TLM simulation technique. The
AHB bus system demonstration application also showed the use-cases of the different
communication refinement levels. In summary, the main strong aspects of this work
include the provided integrated approach, the achieved promising simulation speed, the
achieved promising use-cases and its genericity (not tailored for a specific application).

One shortcoming of this work that needs mentioning is that the simulation accuracy of
the demonstration applications is not analysed. This is mainly due to the unavailability
of models of their cycle-accurate counterparts during the thesis work. In addition, more
investigations and test applications needs to be carried out to verify the scalability of the
methodology for complex systems which are modeled at the PSSLM and IM layers. This
is because the SystemC simulator might be a bottleneck for models with a significant
number of CRL-2 (CA-ISS) components.

6.2 Future works

This work lays down the foundation for an integrated system level modeling framework
for multi-core systems. The methodology as it is now has sufficient ingredients to model
small to medium scale systems. Nevertheless, it still has a large space for improvements
and additional works. Below here are some potential future works that can be done to
extend this work.

1. Enhancing the library: The communication API (the communication interfaces
and the protocol data units), the communication layer (the channels and the inter-
connection networks such as bus and NoC) and the models of other components are
the corner stones of the modeling methodology. A well designed and tested library
of these components fortifies the methodology and ensures designer productivity.
Because the significant effort of modeling new components can be avoided as the
designer can use off-the-shelf components. In addition, such a library offers well
tested and reliable models which can be reused, extended to actual system units
and, most importantly, alleviate interoperability problems. Furthermore, the li-
brary should be extended with more cycle accurate (CA) interconnection networks
as well as CA/ISS/RTL processing elements. These are needed to model systems
at the PSSLM and IM abstraction layers and benefit their respective use cases.

2. Using TLM 2.0: OSCI’s TLM 2.0 provides a communication API which has var-
ious communication interfaces and the generic payload for memory-mapped bus
interconnection. As discussed in Chapter 3, TLM 2.0 mainly aims to be the in-
dustry standard for interoperable TLM modeling. It has all the communication
interfaces available in OCCN and adds additional ones such as DMI and Debug
interfaces. This means all bus related components in the modified OCCN library
can be constructed using TLM 2.0’s interfaces without compromising its interop-
erability objective. Therefore, it might be interesting to reconstruct all bus-related
componets of the library using TLM 2.0’s interfaces and model bus-based multi-
core systems using the same design flow presented in this thesis. However, the
current TLM 2.0 standard does not have a generic payload for NoC interconnects
and hence library components related to NoC interconnects can not be constructed
without compromising the interoperability goal.
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3. Automating the design flow: Section 4.5 showed the design process to follow
for the system modeling technique presented in this thesis. Depending on the
complexity of the system, manually creating these models may sometimes take
considerable effort and time. It may be an interesting task to automate the de-
sign flow so as to save significant design effort and to ultimately use the modeling
framework for iterative tasks such as design space exploration. During this thesis
work, a simple implementation is tried out to show how this can be done using
object-oriented programming techniques. However, such an approach can be ex-
tended to full scale in order to automate the construction of a multi-core system
at a particular abstraction layer given the specifications for architecture and the
software applications.





Appendix A

Codes of Selected Library
Components

Listing A.1: Declaration of OCCN’s Pdu class template
The following code shows the declaration of OCCN’s Pdu class template. This class
provides the data structure which is exchanged between initiators and targets in all
transactions.

template <class W, class R>

class BMasterPort;

template <class W, class R>

class BSlavePort;

template <typename H, typename BU=H, int size=1>

class Pdu

{

public:

Pdu ();

// Assignments modify & return lvalue.

Pdu& operator =(const BU& right );

Pdu& operator =(const BU* right );

BU& operator []( unsigned int x);

operator const BU();

// Conditional operators return true/false:

int operator ==( const Pdu& right) const;

int operator !=( const Pdu& right) const;

// std streams

friend ostream& operator << (ostream& os , const Pdu& ia);

// ... more std streams go here

template <typename H2 , typename BU2 , int size2 >

void* operator new(unsigned int sz ,

BMasterPort <Pdu ,Pdu <H2,BU2 ,size2 > > *port);

template <typename H2 , typename BU2 , int size2 >

void* operator new(unsigned int sz ,

BSlavePort <Pdu ,Pdu <H2,BU2 ,size2 > > *port);

void* operator new(unsigned int sz);

// for channels implementation like AHB (need for BU OR Hdr transfer only)

void copy_sdu(Pdu& src);

void copy_pci(Pdu& src);

int get_pdu_size ();

public:

enum {pci_size = sizeof(H)};

enum {sdu_size = size * sizeof(BU)};
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enum {pdu_size = sizeof(H) + size * sizeof(BU)};

union

{

struct

{

H hdr;

BU body[size];

}

pdu;

char stream[pdu_size ];

} view_as;

unsigned int stream_tail;

unsigned int stream_head;

};

Listing A.1: OCCN’s Pdu class declaration
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Listing A.2: Bidirectional MasterPort Class Declaration
The following code shows the declaration of the bi-directional master port class. This
class provides the port which initiators can use for both sending and receiving transac-
tions.

template <class WPdu , class RPdu=WPdu >

class BMasterPort :public sc_port <BMasterInterface <WPdu ,RPdu >,MAX_IF >

{

public:

BMasterPort ();

void bind(BMasterInterface <WPdu ,RPdu >& interface );

void operator () (BMasterInterface <WPdu ,RPdu >& interface );

void operator () (sc_port <BMasterInterface <WPdu ,RPdu >, MAX_IF > &port);

// communication API

// synchronous blocking call (emission + propagation + reception delays)

void send(WPdu* pk);

// asynchronous blocking call (emission delay)

void asend(WPdu* pk);

RPdu* receive ();

void reply ();

void reply(N_uint nb_cycles );

void reply(sc_time& delay );

// same with time -out feature

void send(WPdu* pk , sc_time& time_out , bool& sent);

void asend(WPdu* pk , sc_time& time_out , bool& sent);

RPdu* receive(sc_time& time_out , bool& received );

protected:

private:

};

Listing A.2: OCCN’s MasterPort class declaration
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Listing A.3: ProcessingElement Class Declaration- Framework only

/*

* Copyright (c) 2009 , Recore Systems B.V., The Netherlands ,

* web: www. recoresystems .com , email: info@recoresystems .com

*

* Any reproduction in whole or in parts is prohibited

* without the written consent of the copyright owner.

*

* All Rights Reserved.

*/

class ProcessingElement0 : public sc_module {

public:

ProcessingElement0(sc_module_name name);

// The set of MasterPorts it has

UMasterPort <std::complex <double >,

std::complex <double > > complexd_master_port0;

// ...

// The set of SlavePorts it has

USlavePort <uchar , uchar > uchar_slave_port0;

// ...

// Buffers for each software process ports

QueueObject <uchar > uchar_incoming_fifo0 ;

QueueObject <std::complex <double > > complexd_outgoing_fifo0;

// ...

SC_HAS_PROCESS(ProcessingElement0 );

sc_in <bool > clock;

private:

// Events to decide transaction sendings

sc_event sending_event_complexd_outgoing_fifo0;

// Instances of software processes mapped on this PE

Actor0 adc;

ACtor3 synch;

// ...

// SystemC processes for computation , reception and sending

void computationProcess ();

void ucharFifo0ReceivingProcess ();

void complexdFifo1SendingProcess ();

// ...

};

Listing A.3: The skeleton of class declarations of processing elements
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Listing A.4: Example software process written as a set of data-independent
tasks
To enable multiple process execution on a processing element

/*

* Copyright (c) 2009 , Recore Systems B.V., The Netherlands ,

* web: www. recoresystems .com , email: info@recoresystems .com

*

* Any reproduction in whole or in parts is prohibited

* without the written consent of the copyright owner.

*

* All Rights Reserved.

*/

class Actor3 {

public:

Actor3 ();

void estimateFineOffsets(cvec &samples , uchar mode ,

uint &timingOffset , double &frequencyOffset );

int estimateCoarseFrequencyOffset(cvec &samples , uchar mode);

cvec correctFrequencyOffset(cvec &samples , uchar mode ,

double &frequencyOffset );

void synchronize( QueueObject <double > &fine_frequency_offset ,

QueueObject <uchar > &mode_received ,

QueueObject <cvec > &sampleBuffer ,

QueueObject <std::complex <double > > &adc_samples ,

QueueObject <cvec > &to_ofdm

);

int state;

private:

cvec fineSyncBuffer;

cvec ofdmFrameBuffer;

int index;

uchar mode;

std::complex <double > tempSample;

};

Actor3 :: Actor3 (){

state =0;

}

void Actor3 :: synchronize( QueueObject <double > &fine_frequency_offset ,

QueueObject <uchar > &mode_received ,

QueueObject <cvec > &sampleBuffer ,

QueueObject <std::complex <double > > &adc_samples ,

QueueObject <cvec > &to_ofdm

){

switch(state){

case 0:

mode=mode_received.remove ();

fineSyncBuffer= sampleBuffer.remove ();

state =1;

break;

case 1:

if (mode > 0 && mode < 5){

double fineFrequencyOffset; uint fineTiming;

estimateFineOffsets(fineSyncBuffer , mode , fineTiming ,fineFrequencyOffset );

cvec ofdmSymbol =

fineSyncBuffer.mid(fineTiming , ModeParameters ::TU[mode -1]);

ofdmSymbol = correctFrequencyOffset(ofdmSymbol , mode ,fineFrequencyOffset );

cvec freqDomainSymbol = fft(ofdmSymbol );

int coarseFrequencyOffset =

estimateCoarseFrequencyOffset(freqDomainSymbol , mode);

fine_frequency_offset.add(fineFrequencyOffset + 2*pi*coarseFrequencyOffset );

ofdmFrameBuffer = fineSyncBuffer.get(fineTiming , fineSyncBuffer.size () -1);

ofdmFrameBuffer.set_size(

ModeParameters ::TS[mode -1]* ModeParameters ::L[mode -1], true);

state =2;

index=( fineSyncBuffer.size() - fineTiming );

}

else state =4;

break;
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case 2:

if(index < ofdmFrameBuffer.size ()){

ofdmFrameBuffer[index] = adc_samples.remove ();

index ++;

}

else{

to_ofdm.add(ofdmFrameBuffer );

state =3; index =0;

cout <<"Actor3: vector sent to ofdm!"<<endl;

}

break;

case 3:

if(index < ModeParameters ::TNULL[mode -1] -

ModeParameters ::TCP[mode -1]){

tempSample=adc_samples.remove ();

index ++;

}

else{

state =4; index =0;

cout <<"Actor3: null symbols skipped!"<<endl;

}

break;

case 4:

if(index < fineSyncBuffer.size ()){

fineSyncBuffer[index]= adc_samples.remove ();

index ++;

}

else state =1;

break;

default:

cout <<"Actor3: unsupported state!"<<endl; break;

}

}

Listing A.4: Example software process written as a set of data-independent tasks
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Codes of Main Elements in
AMBA AHB System
Implementation

Listing B.1: AMBA AHB Bus SystemC Process at Phase-Level Abstraction
The following code listing shows the implementation of the AMBA AHB bus process at
phase-level abstractions with two phases.

template <typename MasterPdu , typename SlavePdu >

void AMBA_AHB_Bus <MasterPdu , SlavePdu >:: AMBA_AHB_Bus_PL_Process (){

N_int id_initiator =-1;

N_int id_target =-1;

int number_of_phases =2;

BurstType burst_type;

Transfer_type transfer_type;

// enable events

for (N_uint i=0; i<masters.get_length (); i++)

{

masters[i]->enable_writing_event ();

masters[i]->enable_reading_event ();

}

for (N_uint i=0; i<slaves.get_length (); i++)

{

slaves[i]->enable_writing_event ();

slaves[i]->enable_reading_event ();

}

// infinite loop

do{

// get or wait for the next request

id_initiator=get_next_request_initiator_id ();

if (id_initiator == -1)

{

wait(* masters_write_ev );

id_initiator=get_next_request_initiator_id ();

}

id_target = get_slave_id_according_address(

occn_hdr (*( masters[id_initiator]->

get_write_pdu_ptr ()), HADDR ));

burst_type= (BurstType)occn_hdr (*(

masters[id_initiator]->

get_write_pdu_ptr ()), HBURST );

transfer_type = (Transfer_type)occn_hdr(

*( masters[id_initiator]->

get_write_pdu_ptr ()), HTRANS );
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//if burst type is not unspecified length incremental type

if(burst_type !=INCR){

// for each beat in the burst

for(int i=0; ((i < (burst_type /4)*4) ||

(burst_type == SINGLE && i==0)); i++ ){

// for each phase in each beat transfer

for(int j=0; j < number_of_phases; j++){

// don ’t wait the master for data in the data

// phase of read transactions

if( !((*( slaves[id_target]->

get_read_pdu_ptr ())). view_as.pdu.hdr.HWRITE ==READ && j==1)){

//if the master is not ready for a new transaction

if (! masters[id_initiator]->is_writing_completed ())

wait(* masters_write_ev );

//if the slave is not ready for a new transaction

if (! slaves[id_target]->is_reading_completed ())

wait(* slaves_read_ev );

swap_master_pdu(id_initiator ,id_target );

masters[id_initiator]->authorize_writing ();

slaves[id_target]->authorize_reading ();

wait(* slaves_read_ev );

wait(clk.posedge_event ());

masters[id_initiator]->notify_sending_completion ();

slaves[id_target]->notify_receiving_completion ();

}

// waiting for response from the slave

if (! slaves[id_target]->is_writing_completed ())

{

wait(* slaves_write_ev );

}

if (! masters[id_initiator]->is_reading_completed ())

{

wait(* masters_read_ev );

}

swap_slave_pdu(id_initiator ,id_target );

slaves[id_target]->authorize_writing ();

masters[id_initiator]->authorize_reading ();

wait(* masters_read_ev );

wait(clk.posedge_event ());

slaves[id_target]->notify_sending_completion ();

masters[id_initiator]->notify_receiving_completion ();

}// End: for each phase

}// End: for each beat

}// End: if not INCR

//If burst type is unspecified length incremental type ,

else

{

// process the first beat

// get the transfer type of the next

while(transfer_type ==SEQ){

// for each phase in each beat transfer

for(int j=0; j < number_of_phases; j++){

// repeat the same code as the previous if clause

}

// get the transfer type of the next

}

}

}while (1);

}

Listing B.1: AMBA AHB Bus Process at Phase-Level Abstraction
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Listing B.2: SimpleMemory Class Declaration The following listing shows the
implementation of a simple flat memory which is used in the experimental setup of the
AMBA AHB bus system demonstration.

/*

* Copyright (c) 2009 , Recore Systems B.V., The Netherlands ,

* web: www. recoresystems .com , email: info@recoresystems .com

*

* Any reproduction in whole or in parts is prohibited

* without the written consent of the copyright owner.

*

* All Rights Reserved.

*/

template <typename MasterPdu , typename SlavePdu >

class Simple_memory : public sc_module {

public:

Simple_memory(sc_module_name name);

~Simple_memory ();

Simple_memory(sc_module_name name , N_uint64 r_latency ,

N_uint64 w_latency , N_uint32 mem_size ,

N_uint32 s_address , std:: string abs_layer ,

int b_width , bool p_screen );

BSlavePort <SlavePdu , MasterPdu > slave_port0;

sc_in <bool > clk;

SC_HAS_PROCESS(Simple_memory );

private:

StatDelay write_read_latency;

StatThroughput throuput_read;

StatThroughput throuput_write;

N_uint64 read_latency; // byte data read latency

N_uint64 write_latency; //a single byte data write latency

N_uint32 memory_size; // the maximum size of the memory in byte

N_uint32 start_address; //an offset for mapping

N_uint8 *mem; // memory array

int bus_width;

bool print_screen;

std:: string abstraction_layer;

private:

void memory_Process (); // SystemC process

bool validate_address(N_uint32 addr , BurstType bt , BeatSize bs);

void process_idle_transfer_type ();

void process_busy_transfer_type ();

void process_nonseq_transfer_type(

BeatSize bs, BurstType bt, N_uint32& addr ,

TransactionDirection td, MasterPdu received_pdu );

void process_seq_transfer_type(

BeatSize bs, BurstType bt, N_uint32& addr ,

TransactionDirection td, MasterPdu received_pdu );

bool process_init_phase(

BeatSize bs, BurstType bt, N_uint32 addr);

void process_write_data_phase(

BeatSize bs, BurstType bt,

N_uint32& addr , MasterPdu received_pdu );

void process_read_data_phase(

BeatSize bs, BurstType bt, N_uint32& addr);

void write_data(

BeatSize bs, BurstType bt, N_uint32& addr ,

SlaveResponse& slave_resp , N_uint32 data);

N_uint32 read_data(

BeatSize bs, BurstType bt, N_uint32& addr ,

SlaveResponse& slave_response );

};

Listing B.2: Class Declaration of Simple Memory
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Abbreviations

ASIC Aapplication Specific Integrated Circuit

CA Cycle Accurate

CCATB Cycle-Count Accurate at Transaction Boundaries

CRL-0 Computation Refinement Level-0

CRL-1 Computation Refinement Level-1

CRL-2 Computation Refinement Level-2

DAB Digital Audio Broadcasting

DMA Direct Memory Access

DMB Digital Multimedia Broadcasting

ESL Electronic System Level

FM Functional Model

GPIO General Purpose Input Output

HDL Hardware Description Language

IM Implementation Model

IP Intellectual Property

ISS Instruction Set Simulator

PE Processing Element

PM Process Model

PSLM Phase-based System Level Model

PSSLM Protocol Specific System Level Model

PV Phase View

RTL Register Transfer Level

RTOS Real Time Operating System

SLM System Level Model
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SoC System-on-Chip

SV Signal View

TI Transaction Interface

TLM Transaction Level Modeling

TSLM Transfer-based System Level Model

TV Transfer View

UT Un-Timed



Glossary

Initiator: Component of the modeled system that initiates a
transaction. Eg: processor

Target: Component of the modeled system that processes a
transaction. Eg: memory

Transaction: The exchange or synchronization of data and/or con-
trol information between two components of a mod-
eled and simulated system. Transactions are either
read or write transfers initiated by an initiator and
processed by a target. The terms initiator and target
are used to indicate the direction of the control flow for
the transaction, which is from an initiator to target.
The data, however, may flow in both directions

Write Transaction: A transaction to transfer data from initiator to target.

Read Transaction: A transaction to transfer data from target to initiator.

Node: Component of the modeled system that is either an
initiator, a target or both an initiator and a target.
Eg: Processor, DMA Controller, GPIO etc.

Processing Element: An initiator node on which software processes can be
mapped and executed.

Interconnection Network: A set of system components other than nodes con-
nected in a certain manner for the sake of relaying
transactions between nodes. Eg: Bus, point-to-point
link, mesh network, etc.

Transaction Interface: An abstract model of the physical communication in-
terfaces of IPs.
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Process: A portion of a software application after partitioning.
Each process is further divided into tasks. This does
not refer to SystemC processes, which will be explicitly
specified whenever mentioned.

Task: A portion of a software process which can be fully
executed without the need for further input data.

Master and Slave: When used to refer a node, the term master is equiv-
alent to an initiator and the term slave to a target.

Master Interface: A SystemC module that inherits from sc interface and
declares virtual functions to be implemented by chan-
nels. It should have enough function constructs that
enable it to initiate new transactions.

Slave Interface: A SystemC module that inherits from sc interface and
declares virtual functions to be implemented by chan-
nels. It does not have constructs for initiating transac-
tions but has functions for processing initiated trans-
actions.

Master Port: An abstract model of the physical I/O port of a mas-
ter IP. A typical implementation is a SystemC module
that inherits from sc port and is binded to a Mas-
ter Interface to be used by Initiators for carrying out
transactions.

Slave Port: An abstract model of the physical I/O port of a slave
IP. A typical implementation is a SystemC module
that inherits from sc port and is binded to a Slave
Interface to be used by Targets for carrying out trans-
actions.

Channel: A channel is an abstract model of a physical link in
SoCs. A typical implementation is a SystemC mod-
ule that implements transaction functions declared by
Master and Slave Interfaces so as to relay transactions
from initiators to targets.
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