2,456 research outputs found

    Photonic circuits for generating modal, spectral, and polarization entanglement

    Get PDF
    We consider the design of photonic circuits that make use of Ti:LiNbO3_{3} diffused channel waveguides for generating photons with various combinations of modal, spectral, and polarization entanglement. Down-converted photon pairs are generated via spontaneous optical parametric down-conversion (SPDC) in a two-mode waveguide. We study a class of photonic circuits comprising: 1) a nonlinear periodically poled two-mode waveguide structure, 2) a set of single-mode and two-mode waveguide-based couplers arranged in such a way that they suitably separate the three photons comprising the SPDC process, and, for some applications, 3) a holographic Bragg grating that acts as a dichroic reflector. The first circuit produces frequency-degenerate down-converted photons, each with even spatial parity, in two separate single-mode waveguides. Changing the parameters of the elements allows this same circuit to produce two nondegenerate down-converted photons that are entangled in frequency or simultaneously entangled in frequency and polarization. The second photonic circuit is designed to produce modal entanglement by distinguishing the photons on the basis of their frequencies. A modified version of this circuit can be used to generate photons that are doubly entangled in mode number and polarization. The third photonic circuit is designed to manage dispersion by converting modal, spectral, and polarization entanglement into path entanglement

    Liquid-Crystal Blazed-Grating Beam Deflector

    Get PDF
    A transmission-type nonmechanical multiple-angle beam-steering device that uses liquid-crystal blazed grating has been developed. Sixteen steering angles with a contrast ratio of 18 has been demonstrated. A detailed analysis of the liquid-crystal and poly(methyl methacrylate) blazed-grating deflector was carried out to provide guidance during the deflector’s development. A manufacturing offset compensation technique is proposed to improve the device’s performance greatly. A hybrid approach utilizing electrically generated blazed grating combined with the cascading approach described here yields in excess of 500 deflecting angles

    Ion beam micromachining of integrated optics components

    Get PDF
    Thin film integrated optics components such as light guides, modulators, directional couplers, and polarizers demand high quality edge smoothness and high resolution pattern formation in dimensions down to submicrometer size. Fabrication techniques combining holographic and scanning electron beam lithography with ion beam micromachining have produced planar phase gratings with intervals as small as 2800 Å, guiding channel couplers in GaAs, and also wire- grid polarizers for 10.6-µm radiation

    An investigation for the development of an integrated optical data preprocessor

    Get PDF
    The successful fabrication and demonstration of an integrated optical circuit designed to perform a parallel processing operation by utilizing holographic subtraction to simultaneously compare N analog signal voltages with N predetermined reference voltages is summarized. The device alleviates transmission, storage and processing loads of satellite data systems by performing, at the sensor site, some preprocessing of data taken by remote sensors. Major accomplishments in the fabrication of integrated optics components include: (1) fabrication of the first LiNbO3 waveguide geodesic lens; (2) development of techniques for polishing TIR mirrors on LiNbO3 waveguides; (3) fabrication of high efficiency metal-over-photoresist gratings for waveguide beam splitters; (4) demonstration of high S/N holographic subtraction using waveguide holograms; and (5) development of alignment techniques for fabrication of integrated optics circuits. Important developments made in integrated optics are the discovery and suggested use of holographic self-subtraction in LiNbO3, development of a mathematical description of the operating modes of the preprocessor, and the development of theories for diffraction efficiency and beam quality of two dimensional beam defined gratings

    Silicon nitride metalenses for unpolarized high-NA visible imaging

    Get PDF
    As one of nanoscale planar structures, metasurface has shown excellent superiorities on manipulating light intensity, phase and/or polarization with specially designed nanoposts pattern. It allows to miniature a bulky optical lens into the chip-size metalens with wavelength-order thickness, playing an unprecedented role in visible imaging systems (e.g. ultrawide-angle lens and telephoto). However, a CMOS-compatible metalens has yet to be achieved in the visible region due to the limitation on material properties such as transmission and compatibility. Here, we experimentally demonstrate a divergent metalens based on silicon nitride platform with large numerical aperture (NA~0.98) and high transmission (~0.8) for unpolarized visible light, fabricated by a 695-nm-thick hexagonal silicon nitride array with a minimum space of 42 nm between adjacent nanoposts. Nearly diffraction-limit virtual focus spots are achieved within the visible region. Such metalens enables to shrink objects into a micro-scale size field of view as small as a single-mode fiber core. Furthermore, a macroscopic metalens with 1-cm-diameter is also realized including over half billion nanoposts, showing a potential application of wide viewing-angle functionality. Thanks to the high-transmission and CMOS-compatibility of silicon nitride, our findings may open a new door for the miniaturization of optical lenses in the fields of optical fibers, microendoscopes, smart phones, aerial cameras, beam shaping, and other integrated on-chip devices.Comment: 16 pages, 7 figure

    Holographic optical elements: Fabrication and testing

    Get PDF
    The basic properties and use of holographic optical elements were investigated to design and construct wide-angle, Fourier-transform holographic optical systems for use in a Bragg-effect optical memory. The performance characteristics are described along with the construction of the holographic system

    GaAs optoelectronic neuron arrays

    Get PDF
    A simple optoelectronic circuit integrated monolithically in GaAs to implement sigmoidal neuron responses is presented. The circuit integrates a light-emitting diode with one or two transistors and one or two photodetectors. The design considerations for building arrays with densities of up to 10^4 cm^-2 are discussed
    corecore