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SECTION 1

INTRODUCTION

1.0	 INTRODUCTION

This report completes the second phase of a comprehensive

program designed to investigate the basic properties of holographic

optical systems. In review, the first phase of the program produced

the following important contributions to the field of holographic optics:

— An indepth experimental study of single element holographic optics.

— A verification of the accuracy of the analytical and computer-based

description of hologram behavior.

— An evaluation of candidate hologram recording materials.

— A preliminary investigation of multielement holographic optical

systems.

To obtain these advances, we performed an extensive analytic

and experimental study. Using interferometric methods we measured

both chromatic and Seidel aberrations for numerous recording geometries,

wavelengths and recording media. Our experimental results were used

to verify the theoretical predictions of computer ray tracing programs.

The details of this investigation can be found in quarterly reports

8204-Q-2 and 8204-Q-3. The main results of this effort were summarized

w
	 in 150 photographs of interference patterns corresponding to various

aberration conditions, together with detailed tables giving imaging and

aberration data. A number of candidate recording media such as photo-

resists, dichromated gelatin, and photodegradable polymers were tested

l	
by measuring diffraction efficiency and signal-to-noiae ratio. Specific

I
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data were reported in quart. -ly reports 8204-Q-1. 8204-Q-2 and

8204-Q-3. In addition, the optimum preparation and processing of each

material was determined. Finally, we constructed and evaluated the

imagery properties of a 4X holographic: telescope. These results were

summarized in a fourth quarterly report, 8204-Q-4.

The investigation of the properties and use of holographic optical
	 1

elements was extensive. It provided not only quantitative data about the

imaging and aberration properties of single holographic optical elements,

but also verified the accuracy of theoretical models and demonstrated the

practical utility of computer-aided design. We believe that this part of

the program provided P. solid basis for the future development of holo-

graphic optics. Bases un the positive results of the first part of the program,

we recommended that it be expanded by: (1) Performing a more detailed

experimental evaluation of multicomponent holographic elements, (2)

Studying fa l)rication techniques, and (3) Initiating a study of synthetic

holographic optical element construction. This report covers the results

of the second phase of the overall investigation.

1. 1	 MULTIELEMENT HOLOGRAPHIC SYSTEMS

Both analytical and experimental data to date indicate that

multiple holographic optical elements will be required to perform imaging

functions equivalent to those of well-corrected classical optical compon-

ents. The advantages of holographic optical elements are a savings in

weight, space and cost, and the capability for realizing sophisticated

and compl.-, design specifications. Procedures for designing multi-

element holographic optical systerns by means of computerized hologram

ray tracing techniques are fairly well developed. However, experien _e
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^.	 with the fabrication, alignment ara testino of multielement holographic

optical systems is limited. In :,ddition, many of the optical properties and

imaging characteristics of multielement holographic: optical systems

have not been experimentally verified.

Multielement holographic optical systems are designed in

principle to perform a specific function, This function may be, for

example, the formation of diffraction-limited imagery of a set of extended,

quasi-monochromatic obj p ets. The type, number, spatial position and

so forth, of each 1w! graphic optical element must be determined by

computer-aided ray tracing analyses for any particular application.

Suitable computer programs for this purpose have been developed by

Latta and Fairchild, and were discussed in quarterly reports 11204-Q-1,

6204-Q-2, and 8204-Q-3. Their algorithms produce designs that minimize

the least-mean-square wavefront error for a consistent set of imaging

constraints.

Having obtained a realizable mul t ielement design, the overall

system must be fabricated. Fabrication consists of a number of steps.

First, optical substrates of high quality must be coated with a light-

sensitive layer. Then each component of the multielement design must be

constructed by exposing the recording mediurito a suitable laser

interference pattern. In general, each element requires a precise

recording geon-ietxy. After processing, each element then receives

some type of overcoating, e. g. , a reflective coating of aluminum with a

protective overcoating of silicon monoxide.

When fabrication is completed, the difficult task of alignment
Y

must be performed. Experience indicates that careful alignment is required
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if the overall imaging performance predicted by the design specifications

is to lie realized. The most sensitive techniques for achieving this

objective are interferimetric. The best known example is the Twyman-

Green interferometer used for testing conventional lens and mirrors.

Finally, when each element is properly positiuned, the multi-

element imaging device requires testing. This is accomplished by using

one or more sti	 :rd procedures such as the Hartmann mask, star,

Foucault, Srhlieren, and resolution tests. Each test provides different

information. For example, the Hartmann test can be used to obtain a

quantitative measure of chromatic, spherical and chromatic aberrations.

Obvioutily, these. techniques, Used for testing conventional optics, require

some modification for testing holographic optical elements.

In the present program we have concentrated on the design

and construction of a wide-angle, Fourier -transform holographic optical

system for use in a Bragg-effect optical memory. The design function

was performed by the Environmental Research Ins Aute of Michigan

(ERIM) according to specifications provided by the Electro-Optics

Operation of Radiation. The performance characteristics and geometry

of the holographic optical system are discussed in Section II. The

construction of the holographic optical system which includes materials,

substrate and overcoating considerations and recording techniques is desc.ibed

in Section I11. Alignment, testing and experimental data are also contained

in Section 111.

1.2	 SYNTHETIC HOLOGRAPHIC OPTICAL ELEMEI fS 	 1

The combination of a computer and precision laser ;canner 	
s

provide an alternative to interferometric methods for constructing	 r.
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complex holographic optical elements. 'The basic principles are the

following. A Lolugraphic optical element is the realization of some

prescribed phase variation that can be ^mpressed upon an incident beam

of light. For example, a cylinder lens is just the function exp(jkx`'!2F),

where F is the to -al length of the lens. The phase variation cRn be

continuous, as in the example- just cited, or it can be realized by a finite
number of sample values. Fur a given phase function the computer is

used to compute the proper sample values. The output of the computer

is used to control a precision laser scanner that writes the desired phase

distribution on, for example, a photoresist material. This is a general

and extremely powerful technique for realizing complex phase functions

f -	 • ect imaging or for subsequent interferometric recording. our

-^pluratory investigation of computer-generated holographic optics is

discussed in Section IV,

1.3	 CONCLUSIONS

The present program, although scientifically fruitful and

certainly comprehensive, must be considered only an initial penetration

into a prop osing area of technology. We believe that holographic optics

have the potential to play an important role in a wide variety of

scientific endeavors. Sper_ific examples of elementary applications are

gratings and large aperture collimators. Two areas that can be exploited

t	 immediately and which we recommend for further research are; (1)

special purpose, high efficiency blazed holographic grating overcoated

for use at vacuum ultraviolet and infrarr-d wavelengths, and (2) synthetic

(computer-generated) holograms. Multielement holographic o ptics is

also a promising area; however, we feel that further progress is this

tarea will require a dedicated effort of at least three years at :nn estimated

n 	 cost of $500, 000. Th? areas we have recommended for further study

1-5
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require far more modest support, and could produce valuable unconventional

scientific devices in the near torm.

'The scope of a continuing research effort in the area of

holographic optics should center on tasks directed towards both the

experimental development of optical devices and instruments and the

further development of theoretical concepts. Specific tasks in a statement

of work might include the following:

1) Perform an indepth fabrication techniques study with emphasis on

substrate materials and the optimization of aluminum and dielectric

overcoating.

2) Develop and write general computer programs fot recording synthetic

holographic optics with a laser scanner. Investigate possible

modifications to the Radiation HRMR System to provide a basis for

generating synthetic holographic optics for optical computer memory

ap!-L cations.

3) Design, fabricate and test high-efficiency, well-corrected holographic

optics of the following type:

— holographic mirrors, lenses, prisms, beam splitters and lenslet
arrays suitable for optical memory applications;

— blazed, dielectric overcoated gratings for use in the vacuum UV
and IR spectral regions; and

a large aperture, reflective holographic objective or collimator
suitable for use in a specified spectral region.

=1) Design, fabricate and test a number of synthetic HOE for specific

applications such as a digital phase randomizer or a Schmidt corrector

plate for a HOE reflective objective.

r
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SECTION II

HOE DESIGN

	

2.0	 INTR0DUC TION

A primary objective of the program was to design and fabricate

a holographic optical element (HOE) system suitable for application in an

optical computer memory. In particular, we wanted to determine the

feasibility of replacing conventional Fourier-transform optics with a

holographic analog. The basic specifications for such a system are a low

diffraction-limited f/number and a wide field of view. Since the scope

of the program precluded the design and analysis necessary to completely

achieve this objective, we decided to test the concept with a prototype design.

This was accomplished with the aid of the computer-based design and

optimization programs developed by Dr. John Latta. The result is a two

element, wide-angle reflective HOE system whose specifications and

characteristics are discussed in subsequent sections.

	2, 1	 SYSTEM SPECIFICATIONS

This section describes a design for a two element holographic

lens system employing reflective hologram elements. The lens system is

designed to image an object field at infinity onto a 4 inch film plane at f/20.

Although a wide angle lens was requ,.sted, implying a half-field of 300 or

better, the decision to use reflective elements in a two lens system limited

the half-field angle to a maximum of 15 0. This is shown by Figures la, b,

and c which show the lens configuration and light rays for field angles of

ac = 0, 10 0 , and -15 0 . Field curvature and image aberrations become

excessive for field angles a c > +10 0 ; the lens can accommodate, however,
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angles of -15 1 s ( c ^ +15 0 . The system geometry and construction is

summarized in Table I.

Z. 2	 SYSTEM PERFORMANCE

Figures 2a and b show the image location L i as a function of

field angles ac and pc , respectively. 'n the p direction, there is a

considerable amount of field curvature symmetrically arranged about

P C = 0 . For sharp focus across the entire field with a flat film, the

depth of focus would have to be t5 mm, about an order of magnitude greater

than can be expected for an f/20 system. In the a direction, there is less

field curvature for ac < 7. 50 , but the image plane is tilted about 50 . This

is due to the change in system focal length caused by changes in the distance

rays travel between holograms for different field angles ac . Although

this problem exists for conventional optical systems, it is aggravated by the

dispersive nature of the holographic optical elements. In addition to field

curvature, this lens design also suffers from barrel distortion.

Still more distortion is introduced by the nonlinear variation

in creep on H2 with changes in a c . This has the eff ,-ct of causing the

image plane to be larger in the x-dimension than in the y-dirension for

the same range of ac and ^c	 In this design, such distortion is

considerable, causing the image plane to be elongated in a 3:2 ratio.

Figures 3a and b show the total wavefront aberrations as a

function of a
c 

and ^c , respectively. With the exception of an anomaly

at ac = -7.5 0 , the aberrations are less than 15 a for ac s 8° , and are

less than 8 X for the entire range of S c . Astigmatism and coma are the

dominant terms.

I
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i TABLE I

HOE PARAMETERS*
i

HOL 1: as = -45 0 , Ro = 0. 387 m

ar = 0, R r =+w

DIP. _ .014m

ORDER -1

}, o = .45794m

140L 2: as =0, Ra=0.181m

a	 -450 , R = 0.290 m
r	 r

DIA = .115m

ORDER = -1

),o = .45794m

SYSTEM: a12 = -55 0 , R 12 = .097m

% c = .4579µm

R = +^
c

Construction parameters are as . Rp for the

signal beam and ar . rR for the reference

beam. The parameter a12 is the angle between

the optic axes of the HOE.
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A multielement hologra phic lens system intended to work

over a relatively large field of view must be carefully designed so that

unwanted diffracted or undiffracted orders do not reach the image plane.

High offset angles, volume holograms, and suitably located stops can be

used to minimize the problem, but may reduce the lens performance in

other respects. Although an offset angle of 45 0 was chosen for the

elements of the lens described here, it can be seen in Figure lc that the

reflected zero order from H2 will strike the film.

Other geometric configurations considered were limited by

aberrations of several hundred wavelengths. These configurations

included rotation of 142 by 45 0 or 900 with respect to Hl, and specificatioi,

of equal but opposite bending factors for tle holograms. Only the

parallel configuration with dimensions clote to those of the final system

had low aberrations. In fact, an evaluation of Champagne's equations

for this system showed astigmatism coefficients that were very nearly

equal but opposite for the two holograms, indicating that the relatively

low aberrations are due to comrensation by the two holograms in the

parallel configuration.

The dimensions were chosen so that the image would fit

	

_.	 approximately onto 4 inch film. The actual image size in the 	 direction

for a 300 field of view is 0. 171 m. or 6. 93 inches. The dimensions can

all be reduced by a scale factor to cover smaller film sizes.

2.3	 CONCLUSIONS AND RECOMMENDATIONS

This study can only be considered as a preliminary approach

to the problem of designing a wide angle lens using holographic lens

elements. Although the aberrations are probably tolerable for many
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applications, the field curvature and distortion are probably too great

for most applications. It may be possible to reduce the aberrations
still further by slight modification of the geometric parameters to provide

even better aberration compensation by the two elements. Image distortion

may be reduced by locating a atop between the lens elements, and by

altering the relative positions of the two elements. It may be possible

to reduce the field curvature by increasing the symmetry of the bending

factors of the elements, although this may greatly increase the lens

aberrations.

The 30 0 field of view is not very large for a wide angle lens.

It nevertheless seems unlikely that the field of view can be increased

significantly in the a-direction for a jyi. Lcm employing two thin hologram

elements operating in the reflective mode. A true wide angle design

employing a multielement holographic lens system may not be possible

even in transmission, however, because of the problem of preventing

unwanted orders from reaching the image plane for all field ar3les.

We believe that further study of the wide angle lens problem

should be carried out in the following steps:

1. Determine whether a geometrical configuration can be developed

that prevents unwanted diffracted orders from reaching the image

plane.

2. By use of a suitable configuration of hologram parameters and

stops consistent with step (1), reduce the field curvature and

distortion of the lens system at a minimum cost in aberrations.

3. Investigate the effects of a wavelength shift on the lens performance.

..........
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SECTION III

HOE EXPERIMENTS

3. 0	 INTRODUCTION

In this chapter we summarize the experimental work required

for the fabrication and testing of the multicomponent reflective HUE

system. First, hologram recording materials are discussed. 'Then we

describe the basic elements of HOE fabrication which include substrate

selection, hologram recording and aluminum overcoating. Finally,

experimental activities related to the alignment and the measurement of

imaging properties of the HOE system are discussed and experimental

data presented.

3.1	 RECORDING MATERIALS

The performance of holographic optical elements depends

greatly upon the characteristics of the recording material. Our initial

plan was to construct holograms only in photoresist; however, we decided

that the high levels of diffraction efficiency and signal/scatter noise ratio

of HOE fabricated from dichromated gelatin were too attractive to ignore.

Although we later discovered problem areas that restrict the general use

of this material, we include our findings for completeness sake.

3. 1. 1	 Dichromated Gelatin

Dichromated gelatin is one of the best available volume phase

recording materials, and is characterized by both high diffraction effi-

ciency with negligible insertion loss and high maximum signal-to-noise

ratio. It can be used to record zone plates with a carrier frequency in

3-1
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excess of 6000 t/mm (Lippmann-Bragg holograms). Holograms recorded

in dichromated gelatin possess reconstruction parameters comparable to

the beat volume phase media such as photodegradable plastics.

Dichromated gelatin layers are prepared by a number of

methods. Of the many possible methods, the one due to Chang (l) , which

is summarized in Table 2, has yielded the most consistent and highest	
^t

quality results. Chang's method of preparation begins with a Kodak 640E

plate. The silver halide is removed by fixation, leaving the gelatin

matrix. The gelatin is hardened and then dichromated.

Hardened gelatin films sensitized with ammonium dichromate

are used to record holograms by simply exposing the prepared plates

to a predetermined average exposure level. The spectral response of

the gelatin film allows exposure with light within the 350 nm to 550 nm

wavelength region. Low efficiency holograms are produced immediately

upon exposure due to crosslinkage of the gelatin molecules. Subsequent

chemical processing, such as that reported by Lin (2) , and listed in

Table 3, greatly enhances diffraction efficiency. The chemical processing

of holograms recorded in dichromated gelatin causes a layer splitting

or cracking to occur in the gelatin. This phenomenon is unique to

dichromated gelatin, and is responsible for the high diffraction efficiencies

obtained.

Initial attempts were made to fabricate the wide-angle

holographic lens system using dichromated gelatin as the recording

medium. This effort was motivated by the hope of simultaneously obtaining

good lens performance and high diffraction efficiency comparable to that of

a conventional optical element. The construction parameters of the

holographic lenses were altered to allow recording the holograms with
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TABLE 2

SUMMARY OF CHANG'S METHOD FOR THE PREPARATION
OF DICHROMA`I'ED GELATIN LAYERS

1. Fix in Part A of Kodak Rapid Fixer a Kodak 649F photographic

emulsion for 10 minutes.

2. Wash with running water at 140 O F for 15 minutes. Start at 70o F and

raise temperature at approximately Z. 51F/min. to OOoF.

3. Stand in air 1 minute.

4. Rinse in distilled water with 2 drops per l iter of Kodak Photo-Flo

600 for 30 seconds.

5. Dry completely in room environment.

6. Soak in room temperature water fcr 2 minutes.

7. Harden in both Part A and Part B of Kodak Rapid Fixer for 10 minutes.

6. Wash for 15 minutes at 70 o F in running water.

U. Rinse in Kodak Photo-Flo solution for 30 seconds.

10. Dry overnight at room temperature.

11. Soak plates for 5 minutes in 5r, ammonium dichromate solution with

2 drops per liter of Kodak Photo-Flo 600.

12. Wipe ammonium dichromate off glass side of plates.

13. Dry at room temperature for at least 4 hours.

n
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TABLE 3

LIN'S DEVELOPMENT PROCESS FOR HOLOGRAMS
RECORDED IN DICHROMATED GELATIN

1. Rinse in a 0. 5%u solution of ammonium dichromate for 5 minutes.

2. Bathe with agitatior in Kodak Rapid Fixer for 5 minutes.
!I

3. Rinse in water for 10 minutes.

4. Dehydrate in a 50/50 solution of water and isopropanol for 3 minutes. 	 ^I

5. Dehydrate in 100 0/c isopropanol for 3 minutes.

6. Free air dry for 1 hour.

:
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the 483 nm line of an argon laser in a reflective type geometry. Direct

recording of the elements in a reflective mode would eliminate the over-

coating process required by photoresist holograms. To avoid the need fur

high quality, low flnumber lenses to provide converging beams for recording,

the design was further altered to allow formation of the hologram using

the conjugate wave forms of the desired diffracted waves. This allowed

construction using diverging spherical waves, and read out using the

conjugate wave. An additional advantage of recording holograms in a

reflective mode is that the Bragg angular sensitivity could be minimized

using a larger exposure than that necessary to obtain 100% diffraction

efficiency, As Kogelnik t3i has shown, this is accounted for by the

broadening of the angular sen -itiv ty as the index of refraction modulation

is increased,

Hulographic optical elements were recorded in dichromated

gelatin in volunie reflection hulograin geometry. To eliminate the effect

that high levels of humidity Have on the hygroscopic gelatin, the holograms

were sealed with optical cement and a clean cover glass. This was done

after chemical processing and complete drying of the hologram. The

processed hologram vas placed in the recording geometry, and when the

Bragg condition was satisfied for the recording conditions the hologram

was sealed. Although the diffract i on efficiencies for holograms prepared

in this way were consistently near 900'(1, aberrations of the diffracted

waveform were severe.

The causes of the observed aberrations are unknown, although

some probable reasons can be stated. For example, since the holographic

element was illuminated by the conjugate wave form, any phase change of

the incident wave caused by passage through the glass subs' -rte would

result to aberrations of the diffracted wave. Also, curing of the optical

f
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cement used to seal the hologram may have had an effc^t on the micro-

fringes recorded in the hologram. This would have causea the fringes to

distort which, in turn, would produce aberrations in the diffracted wave.

The existence of uncompensatable aberrations in the holographic elements

recorded using this method indicates fundamental limitations with respect

to optical quality. A partial solution is the use of well polished optical

plates as substrates,

3.1.2	 Shipley AM 350 Photoresist

Shipley AZ.1350 photoresist has the major advantage of

dimensional stability when compared with gelatin. All gelatin materials

absorb water during processing which causes them to swell, wid changes

the apparent grating frequency. Photoresist is developed by etching away

material in the exposed regions forming a relief grating of exactly the

frequency recorded. The Shipley photoresist was selected for final hologram

construction.

Photoresist is a planar phase recording material; this limits

diffraction efficiency to 345o in each beam. A planar hologram recorded in

a photoresist diffracts backward as well as forward waves, and the back

diffracted beam can be enhanced by a reflective overcoating.

The existence of back diffracted beams allows a transmissio

hologram to be recorded, rather than a reflection hologram to construct

the HOE system, The transmission hologram is recorded with a 450

o ffset giving a spatial frequency of 1650 t,/mm; a reflection hologram would

be recorded with a 135 0 offset (spatial frequency of 4000 f,/mm). The {
lower spatial frequency reduced tie recording stability requirements which

were important due to the long exposure times required.
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	 AZ1350 is primarily a UV sensitive media, and was therefore

used at 457. '-) nm. This is the wavelength for which the HOE system

was designed, but is a low power line of the argon laser. Therefore.

exposure times of 30 minutes and 40 minutes were needed for recording the

small and large elements, respectively.

Past experience has shown that 1 µm thick resist layers are

optimum for holographic recording. Thinner coatings reduce efficiency,

while thicker coatings, in general, have poor surfaces. One micron layers

can be obtained in three ways; spinning, dipping, and gravity flow coating.

Spinning, commonly used in the micro-electronics industry,

has two major disadvantages for holographic purposes. First, it cannot

be used to coat large substrates because they have too much inertia to be

accelerated rapidly enough for uniform coatings. Second, centrifugal

force aligns solid particles on radial contouro. The radial alignment

generates a circular noise ,pattern.

In dipping, the substrate is lowered into a solution and

drawn out at a constant speed. The thickness is controlled by the drawing

rate, faster rates yielding thicker coatings and conversely. For one

micron layers, the substrates were pulled at 34 cm/minute. Dip coating

provides layers which are uniform across the plate, but thicker at the bottom

due to gravity. Figure 4 shows a typical wedge pattern for a 75 x 100mm2

plate, as measured with a Leitz reflecting interference microscope.

For a higher level of uniformity over the center of a substrate,

flow coating is best. This requires carefully leveling a glass substrate

on a flat surface, and setting the boundaries with a metal dam forming a

45 0 angle with the surface to be coated. The resist is poured into the

center of this dam and the plate is tightly covered and allowed to dry in
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FIGURE 4. THICKNESS PROFILE FOR SHIPLEY AZ1350 DIP COATED
ON A 50 mm x 75 mm GLASS SUBSTRATE (RELIEF IN µm).
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a strong solvent atmosphere. Gravity causes the liquid to spread uniformly

mover the plate with a thicker wave at the edges. The coating uniformity

obtainable with flow cast layer is shown in Figure 5.

Flow casting is the only reasonable way to coat very large

substrates, but it presents problems. The plates must be allowed to dry

very slowly (3 hours compared to 3 minutes for dip coating) to prevent

the formation of orange peel. However, Shipley photoresist when liquid

carries a static charge which attracts dust. It requires extreme clean

-oom conditions to cast a dust free coating. For these reasons we chose

to dip coat our plates.

Whichever method is used, the substrates must be *:gorously

cleaned prior to coating. The procedure we used is as follows;

1. Soak for 1 hour in a hot enzyme active alkaline solution.

Z. Soak for 1 hour in aqua regia to neutralize 'he surface.

3. Rinse in distilled water.

4. Rinse in acetone.

5. Rinse in two successive baths of methanol.

6. Blow dry with filtered nitrogen.

7. Bake 30 minutes at 100 0C to remove any trace of water.

8. Dip coat — free air dry 3 minutes.

9. Bake 10 minutes at 125 0C to harden.
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FIGURE 5. THICKNESS PROFILE FOR SHIPLEY AZ1350 FLOW COATED
ON A 100 mm DIAMETER GLASS SUBSTRATE (RELIEF IN µ m).
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3.2	 SUBSTRATES

Kodak precision photographic glass plates were used as

substrates since they provide sufficient dimensional stability and

I+^;

	

	
flatness. Glass is extremely rigid at ordinary temperatures with a

humidity coefficient that is effectively zero and thermal coefficient of

r!

	

	 expansion of only 4. 5 x 10 - " cm per cm per degree Celsius. Gelatin

was stripped off using a mild sodium hydroxide solution to prevent

pitting, and the plates were cleaned and coated as specified in Section

3. 1. Z.

The first element was recorded on 50 mm x 50 mm x 1. 5 m

precision flat plates. Tests showed these plates to be flat to much less

than 1X per centimeter. This slight nonuniformity is constant throughout

recording and reconstruction, and is not objectionable. A more serious

problem is the possibility of warping. When these glass substrates are

subjected to stress such as that characteristic of a hologram plateholder.

warpage results. When this occurs, the reconstructing surface will be

slightly different from the recording surface causing aberrationr,. The

second element was recorded on 10 cm x 12. 5 cm x 0. 625 cm microflat

plates. These plates are specified flat to 0.4X per centimeter. Since

they are thicker, warping should be less of a problem.

3.3	 HOLOGRAM CONSTRUCTION

The holographic lens system discussed in Section II was

constructed in two parts. In order to simplify realignment, we recorded

the second element first. In this way, the first element could be read

out within the original geometry used to record it; this reduced residual

aberration to a minimum value.
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The recording setup for the second element is shown in

Figure 6. A Coherent Radiation Model 52 argon ion laser was used as

a coherent light source. An electro -mechanical shutter with a 1 me to

10 s range was used for turning the laser beam on and off, a convenience

utilized both for hologram recording and the photographic exposure of

interference patterns. A small portion of the laser beam was used for

monitoring laser power and mode struct,ire. The remainder of the laser

beam was divided into a reference and a signal beam to form matched

interferometer paths. Each path provided a spatially filtered spherical

wave with a 100 mm diameter at the recording plane. The objectives

forming the point sources were mounted on micropositioners supported by

a rail and platform; this allowed accurate positioning of the point sources.

The first source was at 18. 1 cm at an angle of 90 0 . The second source was

located 29 cm away from the hologram and had an average angle of

incidence of 450.

The hologram plateholder is designed to provide translational

and rotational motion. It accepts 10 cm x 12. 5 cm substrates, has X-1'

adjustment and is mounted on a Troyke rotary table. This system

permits accurate centering of the hologram and alignment normal to

the signal beam. The latter was important because this element would

require subsequent realignment.

The recording geometry for the lead element is shown in

Figure 7. The point source at 45 0 was moved back to 38.7 cm while

the normally incident beam was collimated. Since this setup would be

used for reconstruction as well as recording, the plateholder had to

allow accurate repositioning after processing. It was therefore designed

to provide both translational and rotational degrees of freedom. The

r
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plateholder accepts 50 mm r 50 min plates with a clear aperture of 45 mm

diameter. We attached the plateholder to a Lansing gimbaled mourt that

in tur : was placed on top of X-Z Lansing translation stages. The entire

assembly was mounted on a Troyke rotary table. A platform and rail

were available for course X-translation.

The recording material was held in the plateholder by means

of three thumb screws. Repeatability of position was obtained by resting

the recording material substrate on three pins. Th_s permitted the

removal of the exposed recording material for chemical processing and

subsequent replacement with good precision.

At 457. 9nm, AZ1350 requires 200mJ /cm2 exposure for

optimum reconstruction parameters. Thus, the first element of the HOE

system required a 30 minute exposure, while the second element required

a 90 minute exposure. We were able to reduce exposure by a factor of

two using UV pre-exposure. The plates were exposed for one second to

a B100 Spectroline mercury vapor lamp. The uniform pre-exposure,

when added to the holographic exposure, gave a total exposure of 200n+J/cm^.

This technique has the disadvantage of increasing the effective K-ratio of

the two beams from 1 to approximately 6 .

After exposure, the plates were processed using undiluted

1350 developer. Trial and error experimentation showed the optimum

development time to be 60 seconds. The plates were then thoroughly

rinsed with distilled water and free air dried. They were then overcoated.

3.4	 ALUMINUM OVERCOATING

Since the interference pattern is etched into photoresist, it is

possible to overcoat it with aluminum to enhance the efficiency of the
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back diffracted beams. The diffraction efficiency of the second element

of the HOE system was measured before and after overcoating in an

experiment to determine the degree of improvement. An interesting

result is the following;

Order of Back
	

Efficiency
	

Efficiency
Diffracted Beam
	

Before Coating
	

After Coating

+1
	

0. 7%
	

130/c

-1
	

0.7%
	

7. 3%

There are two techniques available for overcoating photoresist

holograms with aluminum; sputtering and evaporation.

Sputtering is accomplished by bombarding a target with

energetic particles (positive argon ions) causing surface atoms to be

ejected. These atoms deposit on any surface close to the target. The

aluminum target is larger than the resist plate, so the resulting film is

extremely uniform. Since the target can be any reasonable thickness,

films of up to 3 µm can easily be deposited. Sputtered films have

higher quality than evaporated films since they are more uniform and

adhere better; however, the entire coating chamber is heated to approxi-

mately 200'C which could damage the resist. Therefore, we chose to

coat the plates by evaporation.

Evaporated films are the result of heating the aluminum in a

vacuum chamber until a large number of atoms leave the aluminum surface,

and are deposited on a substrate suspended above. Since only a small

amount of alu ninum can be heated, it acts more like a point source. The

resulting layers are limited to 1 µm and are somewhat less uniform than
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sputtered films. However, the heat is localized at the vapor source

which makes this techniquee safer for coating photoresist materials.

Aluminum dues nut adhere well to photoresists. We therefore

found it desirable to lay down a thin layer of chrome first. This is a

common practice to inciease adhesion, and does not affect the efficiency

of a front surface element. For our lenses, a 10 nm chrome film followed

by :i. 100 nm aluminum film was evaporated onto the photoresist hologram.

As soon as the aluminum is exposed to air, a thin oxide layer

is formed on the surface. This hard layer does not affect the quality of

the coating, but does protect it from further chemical damage. However,

the oxide layer remains susceptible to mechanical damage. If the over-

coated holograms require frequent handling or cleaning, they must be

uvercoated with silicon monoxide to prevent damage.

Both the quality and adhesion of the overcoatings depend

critically upon the cleanliness of the surface to be coated. Since it is

impossible to subject photoresist to stringent cleaning procedures, care

must be taken to minimize handling prior to overcoating. In practice,

we found the cleaning procedures for the glass substrate to be of primary
importance. If the glass is cleaned with a solvent saturated cloth,

transparent streaks of solvent may dry on the surface. This film does

not become apparent until the plate is uvercoated with aluminum, then

it gives the appearance of deep scratches on the surface. The cleaning

procedures that worked best were outlined in Section 3. 1. 2.

3.5	 ALIGNMENT PROCEDURE

After the multielement holographic lens system was recorded

and uvercoated as previously descrCied, the individual holograms must be

3-17
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replaced in the recording geonetry and a" i ;ned. The alignment _,f the

elements must be accomplished precisely if the holographic optical

elements are to provide optimum performance. The alignment of the

wide angle holographic lens system was performed using the classical

methods of the Hartmann test and the modified Twyman-Green interfero-

meter. The Hartmann test allowed positioning on a preliminary basis,

while the interferometer provided a means of detecting misalignments

that cause small phase errors. This section details the experimental

methods used to align the multielement holographic lens system and the

results obtained.

3. 5. 1	 interferometric Alignment "Test

The method chosen to position the front element of the

wide angle letnt system was a modified Twyman-Green interferometer.

The interferometric technique allowed precise alignment of the front.

element on the optic axis. The configuration of the optical equipment

for performing the interferometric alignment is shown in Figure 8.

After the holographic lens was overcoated the plate was

reinserted into the recording geometry in approximately the same position

as during the exposure process. The addition of a cube beamsplitter

into the reference beam allowed observation of the interference pattern

between the specularly reflected reference beam and the signal beam

diffracted by the hologram.

There are several advantages to this type of interferometric

approach. Pathlength equalization in the interferometer is automatically

accomplished. The fundamental waveforms used to forn, the interference

pattern are similar. Also, the fringes are localized in the plane of the

holographic optical element.
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The plateholder the holographic lens was mounted in allowed

precise positioning of the lens on the optic axis. Initial positioning of

the processed hologram in approximately the same position and orientation

as during recording was insured by three pin registration on the plate-

holder. The holder was comprised of an X-Y-L Line Tool micro-

positioner onto which was mounted a Lansing gimballed mount that held

the hologram. The micropositioner provided translational movement

accurate to 2. 5 µm on each axis; while. the Lansing gimballed mount

provided two independent rotational adjustments accurate to 0. 02 mrad.

An interference pattern was observed between the diffracted

and specularly reflected beam when the processed hologram was replaced

in the plateholder. Small adjustments of position and orientation of the

hologram yielded the bright field condition corresponding to on-axis

alignment. A photograph of the bright field interference pattern is shown

in figure 9. The dimension of the interference pattern corresponds to

the full diameter of the hologram, and indicates the zero fringe condition

over a 2. 5 cm aperture of the holographic lens.

The imaging performance of the aligned element was

investigated b}= examining the structure of point images as a function

of aperture size, and by testing the resolution of a single holographic

lens. A collimated beam of adjustable diameter was incident normally

on the holographic lens. The lens diffracted a beam at an angle of

45 degrees which was brought to focus a distance of 39cm away. A

microscope ,bjective then imaged the focused point onto a film plane.

Photographs of point images at the focal point are shown in Figures 10

and 11. Figure 10 is a photograph of a point source image with the lens

focusing a collimated beam at f/20. The waves of aberration seen in the
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FIGURE 9. BRIGHT FIELD INTERFERENCE PATTERN CORRESPONDING
TO ON . -AXIS ALIGNMENT
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photograph are probably caused by a lack of flatness of the aluminized

photoresist/glass surface of the reflective element. Flatness of the glass

plates used as a substrate for the photoresist was nominally less than

1 wave per centimeter. The front element produced a diffraction limited

point focus as shown in Figure 11 when apertured to f/50. The resolution

of the front lens was tested by imaging an USAF 1951 Resolution Test

Chart using a Fourier transform geometry. The image was examined

visually using a microscope. The lens resolved as high as Group 3,

Element 6 corresponding to 14. 25 {,/mm.

3. 5.2	 Hartmann Alignment Test

The use of the Hartmann Mask Test, instead of interferometric

techniques, to align the second element of the holographic lens system

was dictated by the low intensities available at 457, 9 nm; the typical

throughput diffracted power levels of the lenses were in the 100 nW range.

Thie low intensity made visual observation of an extended interference

pattern difficult. The Hartmann test provided a convenient method for

positioning the second element given the low power levels available,

since observation was made at the point focus, effectively increasing

the power level per unit area.

The Hartmann mask test simulates a ray tracing opr,.ation.

In practice, a specially constructed diaphragm is inserted into a

collimated beam incident on an optical element. The diaphragm is an

opaque mask in which several holes approxin-.ately a millimeter in dia-

meter have been made in selected locations. Thus, only selected rays

are allowed past the diaphragm and are incident on the optical element.

The positions of these rays after passage through the optical system

can be adjusted for an optimum condition by shifting or reorienting the

1
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optical element. Quantitative data about gross aberrations can be

obtained by monitoring the positions of the rays relative to the optic
axis.

The initial position of the second element was set to conform

to the dimensions given in the lens design supplied by ERIM. The second

element was mounted in a plateholder that allowed micrometer translations

in three directions and two independent rotational adjustments.

For the alignment of the second element in the wide angle

lens system the Hartmann mask had five holes, each approximately 1 mm

in diameter. One of the holes defined a center, while the other four were

equally spaced around a circle corresponding to an f/20 aperture for the
system. The geometry used for the alignment is shown in Figure 12.

The addition of a mirror (flat to a/4) was necessary to fold the optic axis

to allow direct microscopic examination of the point focus.

The alignment was performed by examining the point focus

of the Hartmann mask. Movement of the microscope along the optic

axis showed the sagittal and tangential foci and the circle of least

confusion. Ideally, in the back focal plane, all five rays passed by

the Hartmann mask would be brought to focus by the lens system to the

same diffraction-limited spot. Since the holes in the Hartmann mask were
small in diameter, what was observed in the back focal plane were five

diffraction limited points. The position of the second element was

adjusted in a raster type scan until the image in the back focal plane was

as close as possible to the ideal single diffraction limited point.

Examination of the Hartmann mask image a meter from the focal point

revealed no astigmatism within the experimental accuracies of the

test.

3-24
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3.6	 RESOLUTION MEASUREMENTS

The resolution of the wide angle holographic lens was

experimentally measured by using the lenses to image an USAF 1951

resolution test chart in a Fourier transform type geometry. The

measurements were performed with a coherent collimated beam of

457. 9 nm light that was amplitude modulated by transmission through

the resolution chart. The beam was incident on the lens for a variety

of field angles. The resolution for each angle was determined by micro-

scopic examination of the refocused image after passage through the

lens system. The measurements were made for an aperture of f/20.

The data are summarized in "Table 4.

From Table 4 we see that the resolution on axis of 16 t1mm

decreases to 6 t,/mm as the angle of incidence changes by 15 deg in the

2
r - 

direction, the plane perpendicular to both elements. As the angle

c
is changed the resolution is degraded from '6 L/mm for an axis

imaging to Q)_/mm for P = 10 deg.
L

A photograph of a section of the target image is shown in

Figure 13 for the field angles ac = -15 deg, $c = 0 deg. A microscope

objective was used to enlarge the aerial image formed of the resolution

target by the holographic lens system. The Group 2. Element 5 shown

^n the photograph is resolved.

3. ;	 MONOCHROMATIC POINT IMAGING

The monochromatic point imaging properties of the aligned

holographic lens system were measured as a function of field angle. A

well-collimated coherent beam of 457. 9 nm light was used to illuminate

s	 t	 ^	 ^	 r
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FIGURE 13. MAGNIFIED VIEW OF THE IMAGE PRODUCED BY
1-IOLOGRAPIIIC OPTICS WHEN THE STANDARD 1951 AIR FORCE	 a,

RESOLUTION TA:2C'r; 1' i :j IN THE FRONT FOCAL
PI,ANE OF LENS
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TABLE 4

RESOLUTION OF THE f/20 WIDE ANGLE HOLOGRAPHIC
LENS SYSTEM VS. THE FIELD ANGLES ac AND Sc

Field Angles Resolution
(deg) Group Element 4/mm

Ci
e
	 Pc

0	 0 4-1 16

+6	 0 3-6 14

-6	 0 3-4 11

+15	 0 2-5 6

-15	 0 2-5 6

0	 +5 3-4 11

0	 +10 3-2 9

(Measurements were made using a USAF 1951 resolution

target coherently illuminated with 457. 9 nm light. The

target was reimaged in a Fourier transform geometry by

the holographic lens system. )

e
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the holographic elements at several field angles. An adjustable iris in

the incident beam provided the means of studying the point imaging abilities

of the lenses as a function of f/number. Microscopic inspection revealed

the quality of the point focus. The experimental geometry used for the

test was identical to that shown in Figure 12 except the adjustable iris

replaced the Hartmann mask.

The point focus of the holographic lens was diffraction limited

only for apertures less than the f/20 value specified in the lens design.

The lens system f/number for diffraction limited performance as a function

of field angle ,x
c 

with c = 0 is shown in Figure 14. The lens system

provides a flat diffraction limited response at f/50 over an angular field

of 12 degrees in the rjc - direction, with the (/number increasing for

larger angular fields. The behavior for the S - direction is similar
c

and is shown in Figure 15.

For photographs, a microscope objective was used to ref-,cas

an enlarged point image on the film plane. A series of photographs of

the resulting image is presented in Figures 16 and 17 for various aperture

sizes and field angles. In Figure 16(a) the circle of least confusion obtained

with f /20 for on-axis imaging is shown. In Figure 16(b) and 16(c) the

sagittal and tangential foci, respectively, are shown for on-axis imaging

at f /20. The lens system becomes diffraction limited as shown in Figure

16(d) when the aperture is decreased to f/50. The magnifications in

Figure 16 is the same; the diffraction limited spot was an average of 55 pm

in diameter. Figures 17(a) and 17(b) show the focused point for x c = +15 deg

and 0 . = 0 . In Figure 17(a) the circle of least confusion produced with

the lens apertured to f/20 is shown. In Figure 17(b) diffraction limited

performance is obtained for an f/150 aperture. The dimension of the

diffraction limited spot was approximately 200 µm.
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a) Circle of least	 1,) Sagittal focus, f/20
confusion, f120

:'14-1,

T	 c) Tangential focus, 	 d) Diffraction limited,
f/20	 f/50

FIGURE 16. POINT IN,IAGES FORMED BY WIDE ANGLE HOF. SYSTEM
FOR ON AXIS IMAGING AS A FUNCTION OF f-NUMBER
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al Circle of least confusion,
f/20; a = +ln o , ? = 0

c	 c

b) Diffraction limited.
f/150; ac = +150. P

C 
- 0

FIGURI-  17. POINT IMAGES FORMED BY THE 110E SN'STEM FOR
COHERENT, COLLIMATED ILLUMINATION INCIDENT AT

= +15 DEG. AN1) 13 = 0
C
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SECTION IV

COMPUTER-GENERATED HOLOGRAPHIC
OPTICAL ELEMENTS

4. o	 INTRODUCTION

Since the introduction by Brown and Lohmann lli of the concept

of computer generated holograms in 1966, there has been ronsiderable

interest in the field of digital holography. The advantage of the computer-

generated hologram is tl.at one can create a hologram of a wavefront which

exists only mathematically. With this motivation a substantial amount of

research i l - 131 has been dedicated to the coding of arbitrary wavefronts so

that a particular computer graphic device could be optimally used to record

synthetic holograms on film or similar recording materials. For obvious

reasons the effects of quantization due to the computation performed by the

computer and of the computer graphic devices on the retarded wavefront has

also been investigated Applications of computer-generated holograms are

three-dimensional displays, spatial filtering, and testing optical surfaces (18-221

Because of f^indamental limitations common to available computer graphic

devices such as the Calcomp plotter and CRT displays, the problem of using

computer holograms for high quality optical elements has not been investi-

gated. McGovern and Wyant (21) used a computer-generated hologram to

reconstruct an ideal spherical wavefront for testing optical surfaces.

However, their paper did not give the details of how the wavefront was

digitized, nor did they discuss the limitations on the wavefront due to the

computer graphic device.

In this section we discuss a method for digitizing a wavefront,

and how the wavefront is computed and recorded by a computer-controlled
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laser scanner. We also discuss the limitations that a laser scanner imposes

on the nature of the wavefront that can be recorded. We will show that the

most important parameter in the digitizing and recording of a given wave-

front is the space bandwidth product. The space bandwidth product of a

wavefront recorded by using a laser scanner is limited by the space bandwidth

product of the laser scanner. Finally, we suggest a method for increasing

the space bandwidth product of the computer-generated hologram.

4. 1	 DIGITIZATION OF WAVEFRONT;

Before a given wavefront can be recorded on film or a similar

recording material by a computer-controlled scanner, the wavefront must

be digitized and used as the input to a computer progra.m. The wavefront

normally can come from experimental measurements or a mathematical

expression. In this sectioi .ve will deal with the digitization of wavefronts

that can be written in analytical form. However, our results can provide

insight about the number of data samples required to adequately describe any

physical wavefront.

Suppose that a certain wavefront can be described analytically as

1 W = expjl2rt9(x)/},j for jxj s A/L
	

(1)

where H(x) is the phase function in units of the wavelength X and A is

the hologram length. The wavelength a is either the wavelength of the

monochromatic light used to measure the phase function g(x) or the wave-

length that will be used later to reconstruct the computer-generated

hologram. In Equation (1) we assume that the wavefront has variation only

along the x-coordinate. It is a simple matter, of course, to extend our

result to the two-dimensional case. Suppose that we have somehow recorded

..	 __
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$ (x) on film and now illuminate the film with a collimated beam of coherent

light. The incident light is diffracted by the phase structure 6(x). The local

bending angle of the light passing through the film is given by

yix) = sin -1 6'(x)	 (2)

where e(x) is the derivative of e(x). The spatial frequency of the wave-

front I W is e q ual to

v(xl = 8in $(x)	 eI(x)	 (3)

	

a.	 %

The bandwidth of the function t(x) can be defined as

B = 2v	 (4)max

where v max = Max I-, (x) I :nd j x J s A

We now consider the problem of taking samples of the wavefront

$(x) and the means for adding a carrier frequency to the wavefront for

recording on film. According to the sampling theorem, the sample values of

J(x) are

fi	 (n6x)	 (5)n

where Lx = 112 max Because the wavefront $(x) is spatially limited, the

number of data samples required to represent the wavefront is equal to

N = A/ ;;x .	 (6)

The parameter N is the space bandwidth product of the wavefront. Since

$(x) is a complex function, it is necessary to convert Vx) into a real non-

negative function before it can be recorded on film. This is accomplished

R
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by putting the wavefront on a carrier frequency. However, this process

unavoidably makes the space bandwidth product of the recorded signal

greater than that of the wavefront $(x) .

We can determine the relationship between the signal to be

recorded on the film and the sampled values of $(x)• Before doing so, we

need the following definition for the discrete Fourier transform (DFT) of

the sampled function I
n	 n

The DFT of [ ¢ } is defined as

_	 N

M. = " n exp(-j N nm)	 (^
n=1

In order to put the function [ $n } on a carrier, we compute the inverse

DFT of {	 } as followsm

NtM/4

tk N	
m-M/4 exp(j M km]	 (8)

m=M/4

for k = -M/2,••.,M/2 .

The parameter M is the total number of sample points to be recorded on the

film. The shifting parameter M/4 will create a carrier frequency in the

function (t ' ;	 Because of the larger bandwidth required by having the

signal on a carrier, the parameter M which is also the space bandwidth

product of [ tk } must be larger than 2N. By appropriate change of

variables, we c p.n rewrite Equation (8) as follows:

N

	

lk = N exp(j ^)	 n exp(j M km)	 (9)
rn= 1

for k = -M/Z, ... , M/2 .
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By substituting Equation (71 into Equation (9) and rearranging terms, we

obtain
N

fik

	

exp (j^) `_, I D(k, n)	 (10)
n=1

whe re
N

D(k, n1 N Ir explj Nm (M k-n)]	 (111
m= 1

The function D(k, n) can be shown to be a Kronecker delta function. There-

fore,

D(k, n)	 M k•n)	 (1Z)

By substituting Equation (12i into Equation (10) we obtain

Ik = exp (jrrk/2) '1' N/M k

exp [ ) 27t(
k4 + 8 ( AM kpx)/x )] .	 (13)

Finally, v e take the real part of [ t') , and add a constant bias to convertk
into a real nonnegative function. After this conversion, the sampled values

of the signal to be recorded on film are equal to

Fk	cos 2n [ 4+ 9 ( M kpx)/),)	 (14)

If this signal is recorded on film with the spacing between samples equal to

Mp x , we can reconstruct the wavefront i (x) by illuminating the film with

a collimated beam of coherent light. From Equation (14) we note that we

must sample the wavefront l (x1 at a rate equal to M/Npx rather than

1/Ax in order to add a carrier frequency to the wavefront.



4-b6	 LQ RAC/AT/ON
IOMY.PV Jf MUa. na.^.n .a. ^rpy:u

We can illustrate the technique just described by means of an

example. Suppose that we want to generab a cylindrical wavefront with a

focal length F and aperture A. The wavefront is given by

;(x) = exp(j _L A (x) J for Nxl < Ai2	 (157

where	 8(x) = Z^F x"

By using Equation (3) we find that the spatial frequency as a function of x

is equal to

+J (x) 
_ )<Fx	

(16)

The maximum frequency occurs at the boundary of the function 1 lx) and is

equal to A/2a F. The bandwidth B of $(xl is therefore equal to A/\ F

and the sampling interval ux is equal to XF/A. From Equation (6) the

space bandwidth product is equal to

N = A' i x F

= FR ='/x	 (171

where R is the aperture ratio A/F. For X = 0.6328 µm, F = 1000 mm,

and R = . 05, the space bandwidth product is calculated to be 3950. This

indicates that we need 7900 samples to record this wavefront on film.

Moreover, the spacing between samples Na./MR is equal to I2. 8 µm.

Substituting a(xl in Equation (15) into Equation (13) we obtain

kN-- ^F zl k = exp)l+7'n1 4 
+ 2Mz ( Az 1k ]}	 (18)

By replacing A='' /?F with N , Equation (181 becomes

z
jk = expi+j2rt(4+ 2

Mz )]
	 (19) j.
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It is interesting to note that in generating a spherical wavefront, only the

parameter N and the spacing Ax between samples are required to

characterize the wavefront.

4. 2	 LASER SCANNER CONSIDERATION

The important parameters of a laser scanner are the scanning

spot size and the total number of spots that can be recorded on film. We

now show by way of example how a laser scanner limits the recording of

wavefronts when the computer technique previously described is used. For

example, if we want to record a spherical wavefront with a laser scanner

on film, it can be shown that the F-number of the spherical wavefront is

directly related to the center spacing of the spots scanned on film by the

scanner. From previous analysis, the sampled wavefront for a spherical

wave is given by

^k = exp lJ M k- I
	

(201

Suppose that we record this sampled wavefront on film using a center spacing

Ax between the scanner spots. The complex wavefront recorded on film can

be written as

t (x) _	 e.xp(J M ^X`) b (x-k x)
k=1

M
(21)

where 6(x) is a Dirac delta function. By comparing the form of 4(x) to that

of a spherical wave, we find that the focal length of 1(x) is

F = M' AxcV?N
	 (221

Since the aperture of the spherical wavefront is equal to MAx , the F-number

of the spherical wavefront is simply
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F-number MAx/XN .	 1231

As we discussed in the previous sections, the condition on M is that it

must be equal to or larger than 2N. As a result, the smallest F-number

achievable with a center spacing of Ax is

F-number - 2Ax/I . 	 (24)

For example, if the center spacing Ax is 2 µm and X is 0. 5 µm, the

smallest F-number achievable is 8. Because the wavefront is mixed with

a spatial carrier frequency, the modulation of the fringe pattern recorded

on film is provided by the adequate separation of the scanned spots.

Therefore, to obtain a f,'8 wavefront, we need a spot size of less than

2 um. Because the center spacing between spots in this case is about 4?,

the jitter of the scanned positions must be less than k to reduce the

possibility of having aberrations in the recorded wavefront.

Generally there is no need for real time generation of optical

elements. Therefore, a relatively slow, straightforwar ,l recording technique

can be used. A low-speed scanner, using an electro-optic modulator driven

by the D/A converted output of a small computer appeals to be adequate.

4.3	 COMPUTER CONSIDERATION

The general procedure in using the computer and the laser

scanner to record a wavefront on film consists of two steps. First the

wavefront has to be digitized (scanned line by scanned line). The data

obtained from each scanned line is then stored on magnetic tapes. Then

a different computer program reads out the data from tape and directs the

scanner to record the wavefront on film. This approach has the advantage

that the digitisation of the wavefront can be done on a general purpose
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computer, while the scanner is controlled by a relatively small computer.

The computation time for digitizing the wavefront depends on the complexity

of the wavefront. if the information about the wavefront is given in the form

of an interferogram, then more computation is necessary. Because the

major task of computing the wavefront is done on a general purpose computer,

the demand on the small computer is rather minimal. In using our

laboratory scanner to record data on film, the DC motor in the scanner

drives the film plates continuously from one end to the next. Therefore,

it is necessary to have all the points along a scanned line stored in the

core memory. In the case of our laboratory computer, this means that

each scanned line can not have more than 4096 points, This restriction is

not necessary if the scanner is designed to act like an incremental plotting

device.

6.

iC

I
7---- — 11	 1
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SECTION V

NEW TECHNOLOGY

After a thorough review of the work performed under the

terms of this contract, we find that no new innovation, discovery,

improvement or invention has resulted.
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A1?1: L• NDICES

We have included in this report two studies by Electra-Optics

Operation personnel describing related work in the area of holographic

optics. Appendix A summarizes experimental data relevant to the

fabrication of large diameter, single component HOE intended for uee

as collimators. Appendix B provides an example of possible applications

of volume phase gratings. In this particular case a volume phase grating

is used as a Bragg-effect wavelength selector in a tunable dye laser.

V
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APPI. :NDIX A

LARGE APERTURE HOLOGRAPHIC
OPTICAL ELEMENTS`

A. 1	 iNTROD'UCTION

In this appendix we summarize an investigation of problems

related to the fabrication of large aperture holographic optical elements.

Although the properties of a hologram are invariant with size, this is not

true with regard to its construction. That is, large holo g rams intended for

imaging, a pplications are significantly more difficult to construct than small

holograms, high quality light-sensitive materials and optical quality sub-

strates of large area are minimum requirements. The substrate must be

coated wi", °ight-sensitive recording material in the most uniform way

possible to avoid aberrations and other imaging defects. Over small areas

this is not difficult. irowever. it is not a trivial task for hologra phic elements

25 c-n in diameter or larger.

We limit our discussion to the fabrication of reflective elements.

The specifications are a 25 cm diameter, a focal length of 1. 2 meters, and

a bending factor of 2. Z. Two approaches are possible; a reflection hologram

of the Lippmann- Bragg type or a planar reflection hol)grarn. For many

applications the latter is potentially more useful, especiall y when metal or

dielectric reflective coatings and blazing are c-msidered. Obvious appli-

cations come to mind for optical systems operating in the LTV or IR spectrum.

The Lest recording medium in terms of resolving power and diffraction

R. G. Tech and L. M. Ralston, Final Report 6317-F (Prepared for
Dr. J. Latta, ERIM, September 1973).

_—u
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efficiency is a high resolution photoresist. Several are available; they will

be des( ribed subsequently.

We have divided our summary into a number of areas. The most

important are recording materials, substrate fabrication, coating techniques,

and hologram construction. A discussion of the main results of the study

follows.

A. L	 RECORDING MAI'ERIALS

The fabrication of high duality holographic optical elements (HOE)

requires excepLionally well-qualified recording materials. Not only must

the recording media be capable of good holographic performance, but must

also possess favorable phy-ical properties and chemical stability. The

latter is o` particular importance for large diameter HOE. From previous

experimental wort related to the present study, it was clear that only a few

recording materials would be suitable. Although we eventually chose a photo-

resist for constructing the HOE because a reflective element was constructed,

we surveyed a number of potentially useful recording materials. The main

properties and characteristics of the better candidate light - sensitive

materials for HOE applications are summ:.rized in tabular form (Table 5).

The best photoresists available for holographic recording are

Shipley AZ 1350 and Horizons Research LHS7. Shipley AZ 1350 is widely

+isel in the microelectronics industry. It is UV-blue sensitive with a

resolving power of about 1500 cycles/mm (70% response). Maximum

reported efficiency for plane wave gratings is 30`no. Processing in-olves a

liquid develapment and postbal<ing. The Horizons Research LHS7 photoresist

is new. It is characterized by a relatively nigh orthochromatic exposure



"
ww	 LM nAv Ar oM

^
]̂

/
B
(

§ )
j )

4̂
Bc
)u

('
; / § (m ; ! #
/ ) u § ( / § ) I_

/ \ \ \ \E ? & A

®e/ y o c ^ o c
a^ & A \ \ \ ƒ A 

^/ [) \ 2/k ^)& ( y«k2® G° >2& ;:%^ g 2 z » z » »	 .

k \ / § \ \ /: A

\\Q 2 2 2 t° D 2a^^ .

( \ \ ( \ ( i

. /

} \ ( ®« [ g\ / 0
0j\ / -/ 2 \\
t

\\
t $ oz/ 2\

\ \_ \ IAI 0 03

^E
0 \/
)jJ^]
\7))%

. .^
d

\^ n /
j ) \0

®^« z=
OD

\\ /=mom

a14 &

/ /

/
)

\\

\\

()

E
E
!E

\\e2
((

f \

\
\
\



L"^. NAO/Ar/ON

sensitivity, a resolving power of 800 cycles /mm (70% response), and a

maximum diffraction efficiency of 31 "t. Cosmetic quality is very good. A

unique aspect of this photoresist is that it is completely developed and fixed

with heated air (at 160' C for 90 seconds).

A. 3	 FABRICATION STUDY

A.3. 1	 Substrate Fabrication

There is a limited choice of substrate materials. We considered

glass and plastic. Plastic was rejected because of surface adhesion

problems, and because it is fairly difficult to obtain a large plastic sheet

with a good optical surface. The most practical choice was a plate klass

substrate with dimensions of 27. 5 x Z7. 5 cm- and 2. 54 cm thick. It was

ground and polished to 1/4 on the front surface and lapped and felt polished

nn the back surface. Edges were beveled, ground, and polished. The work

was done by J. Vanden Broeck at the McDonald Douglas Electronics Corpor-

ation (St. Charles, Mo. ) optical fabrication shop for a total price of $550.

We should point out that selection of a substrate is determined

mainly by optical figure requirements. In general the substrate thickness

increases proportionately with surface quality. However, some glasses are

better (and more expensive) than others in terms of figuring. A good grade

of quartz. e. g. , T14 Optosil 3 (Arnersil Co. ), is recommended because of

superior dimensional stability that allows a 30% decrease in thickness (and

also weight.

.1^

n
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A. 3. 2	 Surface Adhe,Aon

The adhe.,ion to glass of most photoresist materials is generally

poor. The large area of the HOE compounded the problem. We concluded

at the start of the program that a substratum layer was required. Unfortun-

ately, a subbing compound was not available from the manufacturers of the

photoresists. We performed a literature search, but discovered that the

most effective (anti nonscattering) sut:bing chemicals were proprietary to the

large photographic film manufacturers. The most attractive alternative

remaining was to develop a suitable technique for cleaning the glass substrate.

As is well known, the adhesive properties of a surface are enhanced by

thorough cleaning.

The procedures we evolved are elementary, but effective. Two

cases were of interest: (11 previously uncoated substrates, and (2) previously

coated substrates from which the photoresist layer was stripped. To clean

new substrates we recommend the following steps:

1) airknife off dust and large surface particles:

2i rinse in a solvent consisting of equal parts of methyl

alcohol, chioroform. and benzene;

31 wash in a multicomponent detergent, e. g. , Microclean:

and

41 triple rinse in distilled water and free air dry.

Cleaning pre ,. iously coated substrates was complicated by the

residue of the stripped photoresist layer. As a consequence, a more

vigorous cleaning technique is required. We found by trial and error that

the following procedure is effective for the Horizons Research photoresist:
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1) Bathe in Horizons Research photoresist developer.

L) Rinse in warm methylene chloride for 30 minutes.

3) Scrub in fresh methylene chloride with a teflon pad.

4) Scrub in a multi component detergent with a teflon pad.

5) Triple rinse in distilled water and free air dry.

Just prior to coating the photoresist layer, we discovered that

two other steps were necessary. First, • e baked the substrate at 150`C

for one hour to remove surface moisture. A high wattage air gun (rated to

500°C) is also effective for this task. After cooling to room temperature

and transporting to the clean room, the substrate was bathed in filtered

dry nitrogen. These steps are of particular importance under conditions

of high rela•ive humidity.

When the procedures just outlined are used, good adhesion

between the photoresist layer and the glass substrate are consistently

obtained. We note, however, that this assumes that the photoresist layer

is continuous, and that the edges of the substrate are sealed. When these

conditions are not realized, the coating can be damaged, as will be

discussed later.

A. 3. 3	 Coating Te. hniques

Coating a 27. 5 cm square glass substrate with various photo-

resist solutions required the inNestigation of numerous coating techniques.

Because of obvious uniformity and cosmetic quality requirements, only

three techniques appeared feasible. They were spin-coating, dip-coating,

and gravity-flow coating. Each has advantages and disadvantages. For

example, spin-coating was feasible with modification to the spinning

I
I
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apparatus. However, the large truss of the glass substrate pre. tits

sufficient acceleration to spinning speed. As a result, nonunifort, " coatings

are obtained.

High quality coatings were obtained on small substrates by

dip-coating. The extension of this technique to 27. 5 cm square substrates

is not possible for three reasons. First, the thickness of the photoresist

layer is found to vary in a nonlinear way (a linear wedge is acceptablei.

The height profile of the photoresist layer is linearly wedged (approximately)

over the first 75 percent of the length of the substrate but then increases

more rapidly. This is for substrates having dimensions of L cm x 3 cm.

We concluded that the same characteristics would apply to the larger sub-

strates. Second, a large volume of photoresist is required to be maintained

free of dust and moisture. A significantly larger than average cleanbox is

needed for this purpose in order to also allow for withdrawing the entire

length of the substrate from the coating solution. Finally, the coated layer

must dry in a solvent atmosphere to insure a smooth, unit rm photoresist

layer. The solvents used in both the Shipley and Horizons Research photo-

resists have insufficient room temperature vapor pressure for this purpose.

Our preliminary investigation established that gravity-flow

coating is the only feasible technique. Although there are a number of ways

to implement this method, we describe ours to illustrate some of the

problem areas. The details of our approach are outlined in what follows.

The gravity-flow setup consisted of a 30 cm-' granite table flat

to 0. 5 µm, a 2. 5 cm thick tripoded surface plate for leveling the granite slab,

an aluminum casting frame, and an airtight cover to provide a solvent

atmosphere for slow drying. The granite slab and leveling plate were
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located in a vibration free area to minimize surface perturbations. The

casting frame, as shown in Figure 18a, was made from four 27. 5 cm

strips of 0. 32 cm aluminum. The corners are cut to 45 ` and the strips

were bent along the center to approximately 45°. When taped to the

substrate, the frame draws up the solution by capillary action forming an

edge of zero thickness just inside the frame, as shown in Figure 18b.

1 10 cm x 14. 5 cm substrate coated by this method was supplied

by C. Leonard of the Environmental Research Institute of Michigan. It

was tested with a Leitz reflecting interference microscope for surface

uniformity. Ignoring edge effects, we found a maximum thickness variation

of less than 0. Z25 µni. This test showed that gravity flow casting can lie

used to coat substrates with sufficient uniformity. That is, the recording

material will cause a random wavefront aberration of less than :X/2 over

the 25 cm aperture of the HOE.

The airtight cover had a dual purpose; to keep out light and dirt,

and to provide a solvent atmosphere. If the coated substrates are allowed to

free-air dry, the top layer of the photoresist which is in direct contact with

the atmosphere dries first. Then as the lower layers dry, the solvent must

evaporate through the top surface layer; this causes a rippled surface

(orange peel). Substrates allowed to dry entirely in a solvent atmosphere

in general have good surfaces, but can take up to eight hours to completely

dry. The airtight cover was used to provide a compromise between these

extremes. That is, the photoresist solution is flowed on the substrate and

the cover is tightly closed for one hour to allow the solution to spread

uniformly. The cover is opened briefly to vent the solvent atmosphere, and

then closed The rate of drying is controlled by the frequency with which
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F GURE la

87554,2

FIGURE 1b

FIGURE 18. CASTING FRAME (a) AND PHOTORESIST (b) FOR
GRAVITY FLOW CASTING.

f
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the solvent atmosphere is vented. If the photoresist is allowed to dry too

fast, orange peel forms; too slowly and the plate is covered with dust and

other artifacts.

The first coatings were cast in a photographic dark room using

Shipley AZ 1350 photoresist. fn order for the resist to uniformly spread

over the entire substrate, it was diluted to a concentration of one part

AZ 1350 to eight parts methyl ethyl ketone (MEK). On the order of 15 cc of

the photoresist solution was flowed in the center of the substrate and dried

completely in a solvent atmosphere. The resultant coatings were uniform

but cosmetically poor due to a large amount of dust particles. We used

internal filtered air (fan-driven) to reduce the dust particle concentration;

this proved to be helpful, but insufficient. The entire casting apparatus

was then moved to a clean room environment, and set up under a laminar

flow hood. Plates fabricated in the clean room dried with a lower dust

particle concentration than those cases in the dark room. However, cosmetic

quality remained below acceptable standards. We reached the conclusion

that Shipley AZ1350 has a natural affinity for airborne particulate matter.

The evaluation of the Horizons Research photoresist was

initiated in the clean room environment. We found that diluting one part of

HR photoresist with five parts solvent provided a uniform coating of approxi-

mately one micron thick. The coatings were significantly cleaner than

coatings made with Shipley AZ1350. In addition, we found that coatings

made with the Horizons Research photoresist were more consistent.

However, the Horiz,_s e Research photoresist required a much longer drying

time than the Shipley photoresist (drying time is a critical factor in providing

good surface). Nevertheless, we decided that an increased drying time was

I
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a favorable tradeoff in order to gain acceptable cosmetic quality and

consistency. Therefore, we selected Horizons Research photoresist for

fabrication of the HOE.

In addition to the problems caused by dust and other airborne

particles, we encountered two more subtle problems. The first was glass

warpage. When a large glass substrate is fabricated to a specified optical

quality (in this case X/4 surface flatness 1 there can be differences between

neighboring areas that require a priecision optical flat of comparable area

to defect (in the present case this -mplies a flat that is 1,/ZO and Z5,, 2 cm

in diameter). The second was stability. We found that the level of the

substrate could be significantly changed for example, by foot traffic in the

region of the clean area.	 Both of these problems resulted in low quality

photoresist layers. Our solution to the first problem consisted of weighting

the casting frame to compensate for the warpage. This was done with

aluminum blocks. We avoided stability problems by casting during evening

and weekend hours when activity in the clean room area vas at a minimum.

A better solution would be a small floating table, e. g. , mercury supported.

Finally, we again stress the problems caused by particulate

matter. The photoresist solution can be purged by microfiltering prior to

use. Airborne contaminants must be avoided by the use of a laminar

airflow in a clean room environment. Our study indicated that temperature,

relative humidity, drying time, and photoresist solvent (including diluent)

are also important factors.

A. 3. 4	 Ho lorr;, 2, Recording_

TI-e hologram recording setup is shown in Figure 1Q. It consists

of two point sources located at Z in and 0. 75 in distance from the center of
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the hologram recording plane. The angular separation, measured with

a goniometer, is 15 0 . The plateholder is oriented so :hat the fringes are

normal to the surface of the recording material,

In order to insure spherical waves of uniform intensity over

the entire aperture of the HOE, we expanded each beam to an area twice

the diagonal of the glass substrate. This significantly reduced the laser

power density available for exposure. Total irradiance at the hologram

recording plane was only 10 uW/cm' using a LW argon laser operating at

488 nm in a single transverse -rd longitudinal mode (output was 300 mW).

Exposure time was 1.1 minutes: W" indicates the value of high exposure

sensitivity. If Shipley AZ1350 had been used, more than 8 hours of exposure

would be needed.

Prior to hologram recording, an optical black lacquer was

applied to the back of the coated substrate. After expo-ure, the holograms

,Here stripped of the antilialation backing, and then processed with a hotplate

(100"C) and an airgun (160 C1. The hotplate was used to heat the substrate

and thus to avoid thermal shock when the airgun was applied to the photo-

resist layer for development.

A.4	 COMPLETION OF FABRICATION

After processing, the best holograms were aluminized and

silicon monoxide overcoated to produce. reflective elements. This work

was done at the optical facilities of the McDonnell Douglas rllectronics

Corporation (St. Charles, Mo. ). The price was $51 per hologram.

As part of the preparation for aluminizing, the photoresist

layer was cleaned with dry air to remove dust ,)articles and then waf' ^d
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with a detergent and water. All holograms except one (unfortunately the

bnot HOE) survived this treatment. It was later discovered that one corner

of the substrate of the damaged HOE did not seal. This caused a section

of the photoresist to lift off the substrate. A small scratch permitted the

same phenomenon to occur near the center of the HOE. This was

unfortunate because the damaged HOE was of high quality otherwise, and

also of high efficiency.

To complete fabrication, each HOE was painted on the back

surface with an optical black lacquer. Ti,e front surface of the HOE was

covered with a black aperture 25 cm in diameter. The aperture is not

necessary, but serves to define the usable area of the HOE (the edges are

of poor quality) in an obvious way. A photograph of a completed HOE is

shown in Figure 20.

A.5	 CONCLUSIONS

The fabrication of large aperture HOE is feasible. In the

limited context of our investigation we sought to isolate problem areas. A

great number were discovered. However, none were found to be insoluble.

But it is clear that very exacting procedures are required ii uptimum

results are to be obtained. In particular, we emphasize the need for high

quality substrates, a superior clean room facility, and a fairly sophisti-

cated coating apparatus.

we find no reason to believe that large aperture HOE could

not lie produced in large numbers. In fact, many of the p:-)bletns we

encountered were those of scale, and would normally be absent in a

C
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production facility. Once procedures were optimized, large aperture HOE

could be fabricated on a mass production basis.

A.6	 RECOMMENDATIONS

Further study of fabrication techniques is warrantAd. The major

areas are suistrates (materials, subbing, optical figure, etc. ), coating

techniques )optimization of the gravity flow method), and overcoating (metal

versus dielectric and also surface preparation). Each area represents a

phase of co, ,truction that merits optimization if high quality HOE are to be

produced that are competitive with conventional optics.
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APPENDIX B

AN APPLICATiON OF HOLOGRAPIIIC GRATINGS:
S1fAULTANEOUS MULTIPLE OPERATION OF A

TUNABLE DYE LASER':

B. I	 INTRODUCTION

We present a simple and convenient scheme 1'or operating; a

tunable pulsed dve laser at a nun)b-°r of selected wavelengths simultan-

eously. Two watelen l'ths: operation was achieved previously by Taylor,

(11 and by Zalewki and Keller (`)	f 1. More recently, Pilloffet al	 s	 demon-

strated a scheme in whicl the two wavelengths are decoupled by forcing

the dye laser to produce then) with mutually orthogonal polarization.

Unlilce the ahove techniques, no intraca.ity elements are needed in our

scheme, so that insertion losses are avc,ided. Furthermore, more than

two wavelengths can be obtained, and these wavelengths can have the same

polarization.

E . ;	 EXPERIMENTAL SETUP

The experimental setup is shown schematically in Figure 21.

Pulses fron , a nitrogen laser are focused by a cylindrical lens (L) into the

dve cell (D), in a trans%erse pumping configuration. The wavelength

selectors Gt and G. are holographic gratings with spatial frecuercies

of about 3000 lines/nitre. constructed as described by Kogelnik, et al(d),

each grating was sandwiched between a glass substrate and a reflecting

mirror (-.. 90""o reflectivity across the visible). The output coupler U."

Contributed by Dr. A. A. Friesem (on academic leave to the Weizmann
Institute, Rehovot, ,sraell: submitted to Applied Physics Letters with
U. Ganiel and G. Neumann.

B-I



``^ 1/L	 11.`(n`-sin	 1/L
81	 ]/2d.;in'Ej (11

Ma
li-2—	 L" MAO/.47/ON. 1--% -4 o........ :1,1..1.1...,..,,..,.

is a broadband dielectrically coated plane mirror with approximately 40",

reflectivity. An important feature of the arrangement is the shortness of

the cavity v.hich is advantageous in short pulse operation. Typical distances

are ht to G 1 . 7 cm; G1 to G2 , 4 cm; and a dye cell of an o.-erall length

of 4 crn with 15 mm pumped region.

B.3	 OPERATION

The operation of our device is described with reference to

Figure _2 1. The grating G 1 is first oriented so that some particular

wavelength, say :.1, is incident at the Bragg angle, and hence radiation

at this wavelength is reflected back into the laser cavity. Simultaneously,

some other spectral component of the broadband fluorescence of the dye,

sav I-, wil: not satisfy the Bragg condition, so that the grating-mirror

sandwich structure G l will simply reflect it toward G 2 . If now Gz is

oriented to satisfy the Bragg condition for t 2 , feedback at „ is obtained.

Radiation at the two lasing wavelengths passes through the active medium

along the saoie path, and the output beam contains both 1, 1 and

simultaneously. Note that once 1 1 is selected by a specific orientation of

GI radiation at other %va •:clengths is non-dispersively reflected toward

G, ; 2	 can thus be tuned across the gain band without changing the

alignment of G 1	However, radiation at wavelengths close to ?, 1 is

partially diffracted by G l , so that it arrives at G z with a loss of intensity.

In particular the diffracted intensity of the holographic grating has a

spectral half power bandwidth (ZA	 1 given by (4, 51

r
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where ^ is the angle of incidence., d is twice the thickness of the grating,

and n is the index of refraction of he grating medium. In our experin-ients,

wnere 0 — 45°, d = _' x 15 " Gelatin of Kodal: 64 Q F spectroscopic plates),

and ), = 500 nm, we obtain -'_I 	 =
1/..	

10 nm. With thicke, recording

material, it is possible to reduce?, 	 by a factor of 50 to 100, and
1(^

thereby reduce the loss at wavelengths 	 close to ? I .

B.4	 EXPERIMENTAL WORK

Several dye solutions were tested: Rhodamine 6G (R6G). Na

fluorescin, 7-diethylamino-4 methylcournarin 17ll4MC1, and 4-methyl-

umbelliferone (4Mtli. The operational characteristics were similar for all

dyes, and - ,e shall confine our report to observations in an acidic solution

of 4MLt (6, 7r (5 x ln--, molar 41`fU i 1N HG104 in ethanol). Througho^,t the

experiments the nitrogen laser pump pulses (337 mj ) were maintained at

75 KW peak poorer and S nsec FWHM. For sinKle line operation (G.

blocked i the output pulses from the dye laser at 500 nm had a peak power

- It 10 1«,, and 5 nsecs FWIAM. The tuning range of the laser, shown in

Figure L2 was about 85 nm. The linewidth, as measured with a Fabry-Perot

interfer,:'neter and averaged over 1000 pulses, was about r. By inserting

a telescope with a IOX magnification into the cavity (8) between D and Gt

th - linewidth was reduced to less than n. L"; this resulted in a somewhat

]owe r output powe r.

The results of two wavelengths operation are shown in Figure 23.

G^ was aligned for a preseletted; t and G_ wa- adjusted to tune ' r over

the tunimg ranee: three representative scans are shown. For the results

shown in Figures 23a and Z3b
	

was selected at the edges of the laser gain
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band, so the output power, for 1, 2 in the central region of the gain band,

is higher than the power at +,1 . However, as 1 .. approaches ' 1 , the

combined effect of losses due to (i) imperfect mirror reflectivity at GI

(ii) the finite spectral bandwidth of the grating at G l as discussed earlier,

(iii) longer cavity for	 r , and (iv) reduction in gain, cause the power level

at X. to fall below the power at ? 1 . A sirnilar situation exists as 1 . 2 is

always lower than that at ^1 , and as shown in Figure 23c, the region of

simultaneous tuning is reduced. A very significant feature, demonstrated

in Figure 23, is that the power at , 1 does not remain constant as X. is

tuned. This bt avior is expected in a homogeneously broadened medium,

where the radiation fields at ? 1 and Z compete, as it were, for the

same inversion	 We note in passing that the terms homogeneous and

inhomogeneous broadening must be carefully associated with the time scales

involved (10). 
Typical relaxation times within the excited vibration-rotation

manifold are in the 10 -1: sec range. Since the relevant times in the

operation of the dye laser are in the 10 .4 sec regime, the system can be

considered to be homogeneously broadened.

To demonstrate the competition effects more clearly, we

performed an experiment in which A l was fixed at 537 nm (long wavelength

side of the gain band) and ?; 2 was fixed at 498 nm (high gain region). The

power levels at 1`1 and X, were monitored as various neutral density

filters were inserted between G l and G. . The results are shown in

Figure 24. Note that for filter transmission of 1. 0, the ratio between the

powers at l, and X 1 is significantly higher than the same ratio at single

line operation (Figure LLi. This is a clear manifestation of the competition

effects. showing that the high rate of stimulated emission at lz reduces

'i
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the number of excited molecules available for emission at ^ 1 . With

reduced filter transmission the power at "a decreases, and the reduced

rate of stimulated emission at X. leaves more excited molecules

available for emission at X1 , so the power at X1 increases.

The detailed effects of the competition phenomena described

above will differ from one experimental setup to another, depending on the

losses in the cavity, mirror reflectivities, efficiencies of the gratings,

the particular d ye solution used, and the pump power. The basic features

are, however, common to most dye systems.

In general, when aligning G 1 and G. for some Xt and X.

the output powers are not equal. To equalize the powers, either G l or

G2 can be slightly mica 'fined. For example, if the power at }_ 1 is

higher, a slight misalignment of G l will simultaneously reduce the povier

at X1 and increase the power at ?. 2	 With this technique we obtained

equal powers at any chosen pair of wavelengths simultaneously, over a

tuning range of 75 nm. It was possible to obtain 1, 1 and a 2 as close as

' nm to each other. Furthermore, when the powers at 1, 1 and ?. 2 are

equal, the pulses at both wavelengths occur simultaneously to within 0. 5

nsec, and have identical shapes.

23.5	 CONCLUSIONS

The method described here is ersatile and can be readily

extended to simultaneous operation at more than two wavelengths. For

example, we achieved three wavelengths operation by introducing a third

grating after G a and aligning it at the proper angle for some Xs .
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A two wavelen_th tunable pulsed laser should find many

applications in spectroscopy, in contour and multicolor holography, as

well as in optimal mixing experiments. It could also be used conveniently

for obtaining tunable infra-red radiation by difference frequency generation,

which has been recently demonstrated by different groups utilizing either

two lasers 	 or both signal and idler of an optical parametric

oscillator^i^i.

B.b	 ACKNOWLEDGEMENT

We are grateful to Mr. D. Pery for preparing the holographic

gratings.



RAO/ATiON	 li - I I

REFERENCES

1. D. J Tav^. r , S. L. Harris, S. T. K. Nieh and T. W. Ha"risch, Appl.
Phys. Letters, 1?, 269 (11171).

Edward F. Zalewsli and Richard A. Keller, App. Optics, 10, 27.1
(1171 i.

3. 1-1. S. Pilloff, App. Phys. Letters, :11, 339 (1972).

4. H. Kogelnik, C. V. Shank, T. P. Sosnowski and A. Dienes, App, Phys.
Letters, 16, 405 (10701.

5. H. Koge.lnik, Bell. Sys. Tech. Jour. 48, 2909 (1969).

6. C. V. Sliank, A. Dienes, A. N1. Trozzolo and J. A. M;er, App. Phys.
Letters, 16, 405 (1970).

7. A. Bergman, R. David and J. Jortner, Optics Conims. 4, 431 (14721.

3. T. W. Hansch, App. Optics, 11, 8"5 (1972).

a. Similar effects have been observed by Pilloff; see Reference ?.

10. M. Hercher. App. Optics r,, q 47 (11467).

11. C. F. Dewey and L. J. Hocicer, App. Phys. Letters, 18, 58 (1971).

12. G. C. Bha., D. C. Hanna, B. Luther-Davies and R. C. Smith,
Opt. Comms., 6, 323 (1Q72).

.,	 _


	GeneralDisclaimer.pdf
	0001A02.pdf
	0001A03.pdf
	0001A03_.pdf
	0001A04.pdf
	0001A05.pdf
	0001A06.pdf
	0001A07.pdf
	0001A08.pdf
	0001A09.pdf
	0001A10.pdf
	0001A11.pdf
	0001A12.pdf
	0001A13.pdf
	0001A14.pdf
	0001B01.pdf
	0001B02.pdf
	0001B03.pdf
	0001B04.pdf
	0001B05.pdf
	0001B06.pdf
	0001B07.pdf
	0001B08.pdf
	0001B09.pdf
	0001B09_.pdf
	0001B10.pdf
	0001B11.pdf
	0001B12.pdf
	0001B13.pdf
	0001B14.pdf
	0001C01.pdf
	0001C02.pdf
	0001C03.pdf
	0001C04.pdf
	0001C05.pdf
	0001C06.pdf
	0001C07.pdf
	0001C08.pdf
	0001C09.pdf
	0001C10.pdf
	0001C11.pdf
	0001C12.pdf
	0001C13.pdf
	0001C14.pdf
	0001D01.pdf
	0001D02.pdf
	0001D03.pdf
	0001D04.pdf
	0001D05.pdf
	0001D06.pdf
	0001D07.pdf
	0001D08.pdf
	0001D09.pdf
	0001D10.pdf
	0001D11.pdf
	0001D12.pdf
	0001D13.pdf
	0001D14.pdf
	0001E01.pdf
	0001E02.pdf
	0001E03.pdf
	0001E04.pdf
	0001E05.pdf
	0001E06.pdf
	0001E07.pdf
	0001E08.pdf
	0001E09.pdf
	0001E10.pdf
	0001E11.pdf
	0001E12.pdf
	0001E13.pdf
	0001E14.pdf
	0001F01.pdf
	0001F02.pdf
	0001F03.pdf
	0001F04.pdf
	0001F05.pdf
	0001F06.pdf
	0001F07.pdf
	0001F08.pdf
	0001F09.pdf
	0001F10.pdf
	0001F11.pdf
	0001F12.pdf
	0001F13.pdf
	0001F14.pdf
	0001G01.pdf
	0001G02.pdf
	0001G03.pdf
	0001G04.pdf
	0001G05.pdf
	0001G06.pdf
	0001G07.pdf
	0001G08.pdf
	0001G09.pdf
	0001G10.pdf
	0001G11.pdf
	0001G12.pdf
	0001G13.pdf



