133 research outputs found

    A Radar Kit for Hands-On Distance-Learning

    Full text link
    We present an approach to experimental radar systems education based on a combination of commercial low-cost hardware with modern open-source software technologies. Following a discussion of the general top-level architecture of flexible, software-defined radar systems, we introduce the specific selection of subsystems, their capabilities, and current system limitations. Compared to existing approaches to practical radar education, a more top-level modular design with a greater focus on performance and flexibility of baseband processing is selected while reducing the complexity of circuit and subsystem assembly and total system cost. We present example measurements obtained from the radar kit. The radar kit allows for bringing a radar lab to the students instead of students into the labs. It enables practical hands-on radar education also in distance-only-learning scenarios.Comment: Presented at the European Microwave Week 2021, Focussed Session on on Teaching Methods for Microwave Engineerin

    Processing of FMCW 24/120GHz Radar Signals

    Get PDF
    Tato práce dokumentuje návrh, realizaci a funkcionalitu zařízení vzorkující základní pásmo radaru, jeho firmware k akvizici dat a přenos přes USB a programové vybavení pro osobní počítač. Systém byl navrženo pro testovací sadu FMCW radaru Silicon Radar Easy. Důležitá rozhodnutí provedená v procesu návrhu jsou poskytnuty se srovnáním s altenativami pro poskytnutí kontextu a usnadnění vývoje dalších zařízení. Detekce vzdálenosti a rychlosti a ekvalizace I/Q větví jsou krátce probrány, spolu s minimálními systémovými požadavky na zcela zabudované zpracování radarových signálů.This thesis documents the design and performance of baseband sampling hardware, its data acquisition, and USB transmitting firmware, and PC-side reception software, designed for the Silicon Radar Easy FMCW radar module evaluation kit. Major design decision explanations are provided with comparisons to alternatives to provide context and ease further development. Range and velocity detection and I/Q imbalance equalization are briefly discussed, as well as the minimum system requirements for fully embedded signal processing

    Real-time FPGA-based Radar Imaging for Smart Mobility Systems

    Get PDF
    The paper presents an X-band FMCW (Frequency Modulated Continuous Wave) Radar Imaging system, called X-FRI, for surveillance in smart mobility applications. X-FRI allows for detecting the presence of targets (e.g. obstacles in a railway crossing or urban road crossing, or ships in a small harbor), as well as their speed and their position. With respect to alternative solutions based on LIDAR or camera systems, X-FRI operates in real-time also in bad lighting and weather conditions, night and day. The radio-frequency transceiver is realized through COTS (Commercial Off The Shelf) components on a single-board. An FPGA-based baseband platform allows for real-time Radar image processing

    Wireless UAV restraining system

    Get PDF
    The large growth in the number of UAVs for civil use has been accompanied by an increase in the number of incidents with these devices, causing several problems to the authorities, since sometimes they are used in restricted areas, which may lead to disruption to air traffic and possibly endanger human lives. That increases the need of detection systems, such as radars, which sometimes have a high cost. In this thesis, a Low-cost Software Defined Radio based Frequency Modulated Continuous Wave (FMCW) Radar is developed, for real time target detection. For the software part, GNU Radio is used and for the hardware part, two different SDR platforms are studied, USRP N210 and LimeSDR mini. The software developed on GNU Radio is tested through a series of simulations in order to verify its capacity to obtain the range of the target and also the speed of the target and, real time target detection results for the two different SDR Platforms are presented and compared. The results obtained demonstrate the ability of the developed software to be used as part of a Low-cost Software Defined Radio based FMCW Radar, and also the potential of this system to be used for target detection, as long as the problem of the additional delay created by the SDR platforms used is solved.O grande crescimento do número de UAVs para uso civil tem sido acompanhado por um aumento do número de incidentes com esses dispositivos, causando vários problemas às autoridades, já que por vezes estes são usados em áreas restritas, o que pode levar à interrupção do tráfego aéreo e possivelmente pôr em perigo vidas humanas. Isto aumenta a necessidade de sistemas de detecção, como os radares, que por vezes têm um custo elevado. Nesta tese, é desenvolvido um sistema de Radar Contínuo Modulado na Frequência baseado em plataformas de Rádio Definido por Software (SDR) de baixo Custo, para detecção de alvos em tempo real. Para o desenvolvimento de software, o GNU Radio é usado e para a componente de hardware são estudadas duas plataformas SDR diferentes, USRP N210 e LimeSDR mini. O software desenvolvido no GNU Radio é testado através de uma série de simulações, a fim de verificar a sua capacidade de detecção da distância a que o alvo se encontra e da velocidade a que o alvo se desloca, e os resultados da detecção de alvos em tempo real para as duas diferentes plataformas SDR são apresentados e comparados. Os resultados obtidos demonstram a capacidade do software desenvolvido ser usado como parte de um sistema de Radar Contínuo Modulado na Frequência baseado em plataformas de Rádio Definido por Software de baixo custo, e também o potencial deste sistema ser usado para a detecção de alvos, desde que seja resolvido o problema do atraso adicional criado pelas plataformas SDR usadas

    실시간 근거리 영상화를 위한 MIMO 역합성 개구 레이더 시스템

    Get PDF
    학위논문(박사) -- 서울대학교대학원 : 공과대학 전기·정보공학부, 2022. 8. 남상욱.Microwave and millimeter wave (micro/mmW) imaging systems have advantages over other imaging systems in that they have penetration properties over non-metallic structures and non-ionization. However, these systems are commercially applicable in limited areas. Depending on the quality and size of the images, a system can be expensive and images cannot be provided in real-time. To overcome the challenges of the current micro/mmW imaging system, it is critical to suggest a new system concept and prove its potential benefits and hazards by demonstrating the testbed. This dissertation presents Ku1DMIC, a wide-band micro/mmW imaging system using Ku-band and 1D-MIMO array, which can overcome the challenges above. For cost-effective 3D imaging capabilities, Ku1DMIC uses 1D-MIMO array configuration and inverse synthetic aperture radar (ISAR) technique. At the same time, Ku1DMIC supports real-time data acquisition through a system-level design of a seamless interface with frequency modulated continuous wave (FMCW) radar. To show the feasibility of 3D imaging with Ku1DMIC and its real-time capabilities, an accelerated imaging algorithm, 1D-MIMO-ISAR RSA, is proposed and demonstrated. The detailed contributions of the dissertation are as follows. First, this dissertation presents Ku1DMIC – a Ku-band MIMO frequency-modulated continuous-wave (FMCW) radar experimental platform with real-time 2D near-field imaging capabilities. The proposed system uses Ku-band to cover the wider illumination area given the limited number of antennas and uses a fast ramp and wide-band FMCW waveform for rapid radar data acquisition while providing high-resolution images. The key design aspect behind the platform is stability, reconfigurability, and real-time capabilities, which allows investigating the exploration of the system’s strengths and weaknesses. To satisfy the design aspect, a digitally assisted platform is proposed and realized based on an AMD-Xilinx UltraScale+ Radio Frequency System on Chip (RFSoC). The experimental investigation for real-time 2D imaging has proved the ability of video-rate imaging at around 60 frames per second. Second, a waveform digital pre-distortion (DPD) method and calibration method are proposed to enhance the image quality. Even if a clean FMCW waveform is generated with the aid of the optimized waveform generator, the signal will inevitably suffer from distortion, especially in the RF subsystem of the platform. In near-field imaging applications, the waveform DPD is not effective at suppressing distortion in wide-band FMCW radar systems. To solve this issue, the LO-DPD architecture and binary search based DPD algorithm are proposed to make the waveform DPD effective in Ku1DMIC. Furthermore, an image-domain optimization correction method is proposed to compensate for the remaining errors that cannot be eliminated by the waveform DPD. For robustness to various unwanted signals such as noise and clutter signals, two regularized least squares problems are applied and compared: the generalized Tikhonov regularization and the total variation (TV) regularization. Through various 2D imaging experiments, it is confirmed that both methods can enhance the image quality by reducing the sidelobe level. Lastly, the research is conducted to realize real-time 3D imaging by applying the ISAR technique to Ku1DMIC. The realization of real-time 3D imaging using 1D-MIMO array configuration is impactful in that this configuration can significantly reduce the costs of the 3D imaging system and enable imaging of moving objects. To this end, the signal model for the 1D-MIMO-ISAR configuration is presented, and then the 1D-MIMO-ISAR range stacking algorithm (RSA) is proposed to accelerate the imaging reconstruction process. The proposed 1D-MIMO-ISAR RSA can reconstruct images within hundreds of milliseconds while maintaining almost the same image quality as the back-projection algorithm, bringing potential use for real-time 3D imaging. It also describes strategies for setting ROI, considering the real-world situations in which objects enter and exit the field of view, and allocating GPU memory. Extensive simulations and experiments have demonstrated the feasibility and potential benefits of 1D-MIMO-IASR configuration and 1D-MIMO-ISAR RSA.마이크로파 및 밀리미터파(micro/mmW) 영상화 시스템은 비금속 구조 및 비이온화에 비해 침투 특성이 있다는 점에서 다른 이미징 시스템에 비해 장점이 있다. 그러나 이러한 시스템은 제한된 영역에서만 상업적으로 적용되고 있다. 이미지의 품질과 크기에 따라 시스템이 매우 고가일 수 있으며 이미지를 실시간으로 제공할 수 없는 현황이다. 현재의 micro/mmW 이미징 시스템의 문제를 극복하려면 새로운 시스템 개념을 제안하고 테스트베드를 시연하여 잠재적인 이점과 위험을 입증하는 것이 중요하다. 본 논문에서는 Ku-band와 1D-MIMO 어레이를 이용한 광대역 micro/mmW 이미징 시스템인 Ku1DMIC를 제안하여 위와 같은 문제점을 극복할 수 있다. 비용 효율적인 3차원 영상화 기능을 위해 Ku1DMIC는 1D-MIMO 배열 기술과 ISAR(Inverse Synthetic Aperture Radar) 기술을 사용한다. 동시에 Ku1DMIC는 주파수 변조 연속파 (FMCW) 레이더와의 원활한 인터페이스의 시스템 수준 설계를 통해 실시간 데이터 수집을 지원한다. Ku1DMIC를 사용한 3차원 영상화의 구현 및 실시간 기능의 가능성을 보여주기 위해, 2차원 영상화를 위한 1D-MIMO RSA과 3차원 영상화를 위한 1D-MIMO-ISAR RSA가 제안되고 Ku1DMIC에서 구현된다. 따라서, 본 학위 논문의 주요 기여는 Ku-band 1D-MIMO 배열 기반 영상화 시스템 프로토타입을 개발 및 테스트하고, ISAR 기반 3차원 영상화 기능을 검사하고, 실시간 3차원 영상화 가능성을 조사하는 것이다. 이에 대한 세부적인 기여 항목은 다음과 같다. 첫째, 실시간 2D 근거리장 이미징 기능을 갖춘 Ku 대역 MIMO 주파수 변조 연속파(FMCW) 레이더 실험 플랫폼인 Ku1DMIC를 제시한다. 제안하는 시스템은 제한된 수의 안테나에서 더 넓은 조명 영역을 커버하기 위해 Ku 대역을 사용하고 고해상도 이미지를 제공하면서 빠른 레이더 데이터 수집을 위해 고속 램프 및 광대역 FMCW 파형을 사용한다. 플랫폼의 핵심 설계 원칙은 안정성, 재구성 가능성 및 실시간 기능으로 시스템의 강점과 약점을 광범위하게 탐색한다. 설계 원칙을 만족시키기 위해 AMD-Xilinx UltraScale+ RFSoC(Radio Frequency System on Chip)를 기반으로 디지털 지원 플랫폼을 제안하고 구현한다. 실시간 2D 이미징에 대한 실험적 조사는 초당 약 60프레임에서 비디오 속도 이미징의 능력을 입증했다. 둘째, 영상 품질 향상을 위한 파형 디지털 전치왜곡(DPD) 방법과 보정 방법을 제안한다. 최적화된 파형 발생기의 도움으로 깨끗한 FMCW 파형이 생성되더라도 특히 플랫폼의 RF 하위 시스템에서 신호는 필연적으로 왜곡을 겪게된다. 근거리 영상화 응용 분야에서는 파형 DPD는 광대역 FMCW 레이더 시스템의 왜곡을 억제하는 데 효과적이지 않다. 이 문제를 해결하기 위해 Ku1DMIC에서 파형 DPD가 유효하도록 LO-DPD 아키텍처와 이진 탐색 기반 DPD 알고리즘을 제안한다. 또한, 파형 DPD로 제거할 수 없는 나머지 오류를 보상하기 위해 이미지 영역 최적화 보정 방법을 제안한다. 노이즈 및 클러터 신호와 같은 다양한 원치 않는 신호에 대한 견고성을 위해 일반화된 Tikhonov 정규화 및 전체 변동(TV) 정규화라는 두 가지 정규화된 최소 자승 문제를 적용 후 비교한다. 다양한 2차원 영상화 실험을 통해 두 방법 모두 부엽 레벨을 줄여 화질을 향상시킬 수 있음을 확인한다. 마지막으로, ISAR 기법을 2차원 영상 플랫폼에 적용하여 실시간 3차원 영상을 구현하기 위한 연구를 진행한다. 1D-MIMO-ISAR 구성에서 실시간 3D 이미징의 구현은 이러한 구성이 3D 이미징 시스템의 비용을 크게 줄일 수 있다는 점에서 영향력이 있다. 따라서 이 논문에서는 1D-MIMO-ISAR 구성에 대한 이미징 재구성을 가속화하기 위해 1D-MIMO-ISAR 범위 스태킹 알고리즘(RSA)을 제안한다. 제안된 1D-MIMO-ISAR RSA는 널리 알려진 Back-Projection 알고리즘과 거의 동일한 이미지 품질을 유지하면서도 수백 밀리초 이내에 이미지를 재구성함으로써 실시간 영상화에 대한 가능성을 보여준다. 또한 물체가 시야에 들어오고 나가는 실제 상황을 고려하기 위한 ROI 설정, 그리고 메모리 할당에 대한 전략을 설명한다. 광범위한 시뮬레이션과 실험을 통해 1D-MIMO-IASR 구성 및 1D-MIMO-ISAR RSA의 가능성과 잠재적 이점을 확인한다.1 INTRODUCTION 1 1.1 Microwave and millimeter-wave imaging 1 1.2 Imaging with radar system 2 1.3 Challenges and motivation 5 1.4 Outline of the dissertation 8 2 FUNDAMENTAL OF TWO-DIMENSIONAL IMAGING USING A MIMO RADAR 9 2.1 Signal model 9 2.2 Consideration of waveform 12 2.3 Image reconstruction algorithm 16 2.3.1 Back-projection algorithm 16 2.3.2 1D-MIMO range-migration algorithm 20 2.3.3 1D-MIMO range stacking algorithm 27 2.4 Sampling criteria and resolution 31 2.5 Simulation results 36 3 MIMO-FMCW RADAR IMPLEMENTATION WITH 16 TX - 16 RX ONE- DIMENSIONAL ARRAYS 46 3.1 Wide-band FMCW waveform generator architecture 46 3.2 Overall system architecture 48 3.3 Antenna and RF transceiver module 53 3.4 Wide-band FMCW waveform generator 55 3.5 FPGA-based digital hardware design 63 3.6 System integration and software design 71 3.7 Testing and measurement 75 3.7.1 Chirp waveform measurement 75 3.7.2 Range profile measurement 77 3.7.3 2-D imaging test 79 4 METHODS OF IMAGE QUALITY ENHANCEMENT 84 4.1 Signal model 84 4.2 Digital pre-distortion of chirp signal 86 4.2.1 Proposed DPD hardware system 86 4.2.2 Proposed DPD algorithm 88 4.2.3 Measurement results 90 4.3 Robust calibration method for signal distortion 97 4.3.1 Signal model 98 4.3.2 Problem formulation 99 4.3.3 Measurement results 105 5 THREE-DIMENSIONAL IMAGING USING 1-D ARRAY SYSTEM AND ISAR TECHNIQUE 110 5.1 Formulation for 1D-MIMO-ISAR RSA 111 5.2 Algorithm implementation 114 5.3 Simulation results 120 5.4 Experimental results 122 6 CONCLUSIONS AND FUTURE WORK 127 6.1 Conclusions 127 6.2 Future work 129 6.2.1 Effects of antenna polarization in the Ku-band 129 6.2.2 Forward-looking near-field ISAR configuration 130 6.2.3 Estimation of the movement errors in ISAR configuration 131 Abstract (In Korean) 145 Acknowlegement 148박

    Signal processing architectures for automotive high-resolution MIMO radar systems

    Get PDF
    To date, the digital signal processing for an automotive radar sensor has been handled in an efficient way by general purpose signal processors and microcontrollers. However, increasing resolution requirements for automated driving on the one hand, as well as rapidly growing numbers of manufactured sensors on the other hand, can provoke a paradigm change in the near future. The design and development of highly specialized hardware accelerators could become a viable option - at least for the most demanding processing steps with data rates of several gigabits per second. In this work, application-specific signal processing architectures for future high-resolution multiple-input and multiple-output (MIMO) radar sensors are designed, implemented, investigated and optimized. A focus is set on real-time performance such that even sophisticated algorithms can be computed sufficiently fast. The full processing chain from the received baseband signals to a list of detections is considered, comprising three major steps: Spectrum analysis, target detection and direction of arrival estimation. The developed architectures are further implemented on a field-programmable gate array (FPGA) and important measurements like resource consumption, power dissipation or data throughput are evaluated and compared with other examples from literature. A substantial dataset, based on more than 3600 different parametrizations and variants, has been established with the help of a model-based design space exploration and is provided as part of this work. Finally, an experimental radar sensor has been built and is used under real-world conditions to verify the effectiveness of the proposed signal processing architectures.Bisher wurde die digitale Signalverarbeitung für automobile Radarsensoren auf eine effiziente Art und Weise von universell verwendbaren Mikroprozessoren bewältigt. Jedoch können steigende Anforderungen an das Auflösungsvermögen für hochautomatisiertes Fahren einerseits, sowie schnell wachsende Stückzahlen produzierter Sensoren andererseits, einen Paradigmenwechsel in naher Zukunft bewirken. Die Entwicklung von hochgradig spezialisierten Hardwarebeschleunigern könnte sich als eine praktikable Alternative etablieren - zumindest für die anspruchsvollsten Rechenschritte mit Datenraten von mehreren Gigabits pro Sekunde. In dieser Arbeit werden anwendungsspezifische Signalverarbeitungsarchitekturen für zukünftige, hochauflösende, MIMO Radarsensoren entworfen, realisiert, untersucht und optimiert. Der Fokus liegt dabei stets auf der Echtzeitfähigkeit, sodass selbst anspruchsvolle Algorithmen in einer ausreichend kurzen Zeit berechnet werden können. Die komplette Signalverarbeitungskette, beginnend von den empfangenen Signalen im Basisband bis hin zu einer Liste von Detektion, wird in dieser Arbeit behandelt. Die Kette gliedert sich im Wesentlichen in drei größere Teilschritte: Spektralanalyse, Zieldetektion und Winkelschätzung. Des Weiteren werden die entwickelten Architekturen auf einem FPGA implementiert und wichtige Kennzahlen wie Ressourcenverbrauch, Stromverbrauch oder Datendurchsatz ausgewertet und mit anderen Beispielen aus der Literatur verglichen. Ein umfangreicher Datensatz, welcher mehr als 3600 verschiedene Parametrisierungen und Varianten beinhaltet, wurde mit Hilfe einer modellbasierten Entwurfsraumexploration erstellt und ist in dieser Arbeit enthalten. Schließlich wurde ein experimenteller Radarsensor aufgebaut und dazu benutzt, die entworfenen Signalverarbeitungsarchitekturen unter realen Umgebungsbedingungen zu verifizieren

    Hybrid Beam-Steering OFDM-MIMO Radar: High 3-D Resolution With Reduced Channel Count

    Get PDF
    We report on the realization of a multichannel imaging radar that achieves uniform 2-D cross-range resolution by means of a linear array of a special form of leaky-wave antennas. The presented aperture concept enables a tradeoff between the available range resolution and a reduction in the number of channels required for a given angular resolution. The antenna front end is integrated within a multichannel radar based on stepped-carrier orthogonal frequency-division modulation, and the advantages and challenges specific to this combination are analyzed with respect to signal processing and a newly developed calibration routine. The system concept is fully implemented and verified in the form of a mobile demonstrator capable of soft real-time 3-D processing. By combining radio frequency (RF) components operating in the W-band (85-105 GHz) with the presented aperture, a 3-D resolution of less than 1.5° x 1.5° x 15 cm is demonstrated using only eight transmitters and eight receivers

    A System Level FMCW RADAR Optimization For Automotive Powertrain Control Application Requirements

    Get PDF
    A full system level analysis, design, and ealization of frequency-modulation / continuous-wave (FMCW) RADAR is presented in this thesis. RADAR technology has been around for over half a century, and has found itself in a wide range of applications effecting every day life. As such, there are many possible system level tradeoffs that can be made when designing a sensor for a specific application. This paper will focus on designing a sensor for a hybrid electric vehicle powertrain control unit, as part of a new application in fuel economy improvement. The system level analysis will derive a full baseband signal analysis model, and examine some of the commonly used modulation schemes. Next, a method for tuning the modulation waveform properties to optimize the sensor specifically for the application requirements is presented. Finally a system level realization is proposed to produce synchronous and streamlined processing of the signals, while providing flexibility to tune the implementation as suggested during the modulation waveform optimization. As a proof of concept, a hardware prototyping platform was designed and built to allow acquisition of real signals which are to be fed into a signal processing algorithm. The signal processing algorithm to decode the measurement results can then be developed effectively using real data. Some of the measurement results obtained with the prototyping platform and system optimizations suggested within this thesis are presented to verify the analysis and modeling performed

    A system-on-chip microwave photonic processor solves dynamic RF interference in real time with picosecond latency

    Full text link
    Radio-frequency interference is a growing concern as wireless technology advances, with potentially life-threatening consequences like interference between radar altimeters and 5G cellular networks. Mobile transceivers mix signals with varying ratios over time, posing challenges for conventional digital signal processing (DSP) due to its high latency. These challenges will worsen as future wireless technologies adopt higher carrier frequencies and data rates. However, conventional DSPs, already on the brink of their clock frequency limit, are expected to offer only marginal speed advancements. This paper introduces a photonic processor to address dynamic interference through blind source separation (BSS). Our system-on-chip processor employs a fully integrated photonic signal pathway in the analogue domain, enabling rapid demixing of received mixtures and recovering the signal-of-interest in under 15 picoseconds. This reduction in latency surpasses electronic counterparts by more than three orders of magnitude. To complement the photonic processor, electronic peripherals based on field-programmable gate array (FPGA) assess the effectiveness of demixing and continuously update demixing weights at a rate of up to 305 Hz. This compact setup features precise dithering weight control, impedance-controlled circuit board and optical fibre packaging, suitable for handheld and mobile scenarios. We experimentally demonstrate the processor's ability to suppress transmission errors and maintain signal-to-noise ratios in two scenarios, radar altimeters and mobile communications. This work pioneers the real-time adaptability of integrated silicon photonics, enabling online learning and weight adjustments, and showcasing practical operational applications for photonic processing
    corecore