15,385 research outputs found

    Design and simulation analysis of an improved lower limb exoskeleton

    Get PDF
    The lower extremity exoskeleton robot is a type of power assisted robot which can enhance the human walking function. A fundamental problem in the development of the exoskeleton is the choice of lightweight actuators. Thus in the mechanical structure design in this paper, the linear motor is selected as it greatly reduces the complexity of the mechanical structure. Furthermore, the limit switch inside the motor improves the safety performance. Based on the last version of the exoskeleton, the band positions, length adjusting holes and mechanical limit structures are increased. In addition, a control system based on DSP is designed. Furthermore, a kinematics analysis is carried out using the D-H parameter method and a dynamic analysis is developed using the Newton-Euler method. The driving force of every joint is obtained during the simulation using ADAMS software

    Feasibility of Manual Teach-and-Replay and Continuous Impedance Shaping for Robotic Locomotor Training Following Spinal Cord Injury

    Get PDF
    Robotic gait training is an emerging technique for retraining walking ability following spinal cord injury (SCI). A key challenge in this training is determining an appropriate stepping trajectory and level of assistance for each patient, since patients have a wide range of sizes and impairment levels. Here, we demonstrate how a lightweight yet powerful robot can record subject-specific, trainer-induced leg trajectories during manually assisted stepping, then immediately replay those trajectories. Replay of the subject-specific trajectories reduced the effort required by the trainer during manual assistance, yet still generated similar patterns of muscle activation for six subjects with a chronic SCI. We also demonstrate how the impedance of the robot can be adjusted on a step-by-step basis with an error-based, learning law. This impedance-shaping algorithm adapted the robot's impedance so that the robot assisted only in the regions of the step trajectory where the subject consistently exhibited errors. The result was that the subjects stepped with greater variability, while still maintaining a physiologic gait pattern. These results are further steps toward tailoring robotic gait training to the needs of individual patients

    Effects on mobility training and de-adaptations in subjects with Spinal Cord Injury due to a Wearable Robot: A preliminary report

    Get PDF
    open7noopenSale, Patrizio; Russo, Emanuele Francesco; Russo, Michele; Masiero, Stefano; Piccione, Francesco; Calabrò, Rocco Salvatore; Filoni, SerenaSale, Patrizio; Russo, Emanuele Francesco; Russo, Michele; Masiero, Stefano; Piccione, Francesco; Calabrò, Rocco Salvatore; Filoni, Seren

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    DEVELOPMENT OF A NOVEL INTERACTIVE VISUAL TASK FOR A ROBOT-ASSISTED GAIT TRAINING IN STROKE

    Get PDF
    The goal of this thesis is to develop an interactive visual task for robot-assisted gait training after stroke. This is designed as a simple soccer-based computer video-game displayed on a screen, played by moving the ankle in dorsiflexion or plantarflexion to guide a soccer ball from its original position towards the goal. This stand-alone game is interfaced with the impedance controlled modular ankle exoskeleton (“Anklebot”) that provides assistance only as-needed, as an augmentative tool to further enhance ankle neuro-motor control and whole-body function after task-oriented robot-assisted treadmill walking. The design and features of the interactive video game, as well as the underlying biomechanical model that relates patient-to-game performance are presented. Simple adaptive performance algorithms are embedded, and bench tested to auto-adjust game parameters in real-time, concomitant to ongoing patient performance during robot-assisted therapy. Human in-loop testing strategies are proposed to validate the video-game performance and its feasibility for clinical use

    JNER at 15 years: analysis of the state of neuroengineering and rehabilitation.

    Get PDF
    On JNER's 15th anniversary, this editorial analyzes the state of the field of neuroengineering and rehabilitation. I first discuss some ways that the nature of neurorehabilitation research has evolved in the past 15 years based on my perspective as editor-in-chief of JNER and a researcher in the field. I highlight increasing reliance on advanced technologies, improved rigor and openness of research, and three, related, new paradigms - wearable devices, the Cybathlon competition, and human augmentation studies - indicators that neurorehabilitation is squarely in the age of wearability. Then, I briefly speculate on how the field might make progress going forward, highlighting the need for new models of training and learning driven by big data, better personalization and targeting, and an increase in the quantity and quality of usability and uptake studies to improve translation
    • …
    corecore