21,762 research outputs found

    Advanced manned space flight simulation and training: An investigation of simulation host computer system concepts

    Get PDF
    The findings of a preliminary investigation by Southwest Research Institute (SwRI) in simulation host computer concepts is presented. It is designed to aid NASA in evaluating simulation technologies for use in spaceflight training. The focus of the investigation is on the next generation of space simulation systems that will be utilized in training personnel for Space Station Freedom operations. SwRI concludes that NASA should pursue a distributed simulation host computer system architecture for the Space Station Training Facility (SSTF) rather than a centralized mainframe based arrangement. A distributed system offers many advantages and is seen by SwRI as the only architecture that will allow NASA to achieve established functional goals and operational objectives over the life of the Space Station Freedom program. Several distributed, parallel computing systems are available today that offer real-time capabilities for time critical, man-in-the-loop simulation. These systems are flexible in terms of connectivity and configurability, and are easily scaled to meet increasing demands for more computing power

    Scoping the future: a model for integrating learning environments

    Get PDF
    The Virtual Learning Environment (VLE) has become synonymous with online learning in HE.However, with the rise of Web 2.0 technologies, social networking tools and cloud computing thearchitecture of the current VLEs is increasingly anachronistic. This paper suggests an alternative tothe traditional VLE: one which allows for flexibility and adaptation to the needs of individual teachers,while remaining resilient and providing students with a seamless experience. We present a prototypeof our vision, combining our new development software and a number of existing tried and tested toolsinto a single flexible interface, and built on established pedagogical and technical standards

    Design of a Scalable Modular Production System for a Two-stage Food Service Franchise System

    Get PDF
    The geographically distributed production of fresh food poses unique challenges to the production system design because of their stringent industry and logistics requirements. The purpose of this research is to examine the case of a European fresh food manufacturer’s approach to introduce a scalable modular production concept for an international two‐stage gastronomy franchise system in order to identify best practice guidelines and to derive a framework for the design of distributed production systems that perform in a highly dynamic environment. The design framework was developed by creating a theoretical model through literature review and the thorough analysis of an industrial case. Information was collected through multiple site visits, workshops and semi‐structured interviews with the company’s key staff of the project, as well as examination of relevant company documentations. By means of a scenario for the Central European market, the model was reviewed in terms of its development potential and finally approved for implementation. However, research through case survey requires further empirical investigation to fully establish this approach as a valid and reliable design tool

    Extending Modular Semantics for Bipolar Weighted Argumentation (Technical Report)

    Full text link
    Weighted bipolar argumentation frameworks offer a tool for decision support and social media analysis. Arguments are evaluated by an iterative procedure that takes initial weights and attack and support relations into account. Until recently, convergence of these iterative procedures was not very well understood in cyclic graphs. Mossakowski and Neuhaus recently introduced a unification of different approaches and proved first convergence and divergence results. We build up on this work, simplify and generalize convergence results and complement them with runtime guarantees. As it turns out, there is a tradeoff between semantics' convergence guarantees and their ability to move strength values away from the initial weights. We demonstrate that divergence problems can be avoided without this tradeoff by continuizing semantics. Semantically, we extend the framework with a Duality property that assures a symmetric impact of attack and support relations. We also present a Java implementation of modular semantics and explain the practical usefulness of the theoretical ideas

    General fixed points of quasi-local frustration-free quantum semigroups: from invariance to stabilization

    Full text link
    We investigate under which conditions a mixed state on a finite-dimensional multipartite quantum system may be the unique, globally stable fixed point of frustration-free semigroup dynamics subject to specified quasi-locality constraints. Our central result is a linear-algebraic necessary and sufficient condition for a generic (full-rank) target state to be frustration-free quasi-locally stabilizable, along with an explicit procedure for constructing Markovian dynamics that achieve stabilization. If the target state is not full-rank, we establish sufficiency under an additional condition, which is naturally motivated by consistency with pure-state stabilization results yet provably not necessary in general. Several applications are discussed, of relevance to both dissipative quantum engineering and information processing, and non-equilibrium quantum statistical mechanics. In particular, we show that a large class of graph product states (including arbitrary thermal graph states) as well as Gibbs states of commuting Hamiltonians are frustration-free stabilizable relative to natural quasi-locality constraints. Likewise, we provide explicit examples of non-commuting Gibbs states and non-trivially entangled mixed states that are stabilizable despite the lack of an underlying commuting structure, albeit scalability to arbitrary system size remains in this case an open question.Comment: 44 pages, main results are improved, several proofs are more streamlined, application section is refine

    Creation of configurations for an assembly system with a scalable level of automation

    Get PDF
    Due to shortened product lifecycles and an increasing number of variants, the need for scalable assembly systems is rising. This trend is even stronger in the production of emerging technologies. An important step in the planning of a scalable assembly system is the creation of system configurations. State of the art is a scaling of the system from a manual, over semi-automated to an automated system during the start of production. This process is very rigid and does not offer the flexibility which is necessary to react to highly volatile influencing factors. The authors have identified the urgent need for a thorough scenario analysis to adequately consider the risk in predicting volatile influencing factors. In this paper, a two-part methodology is proposed considering multiple scaling mechanisms allowing for a swift and cost-effective adaptation to external factors. The first part is concerned with the scenario analysis. In this part, the planner has to identify the volatile receptors that influence their production. For each of the identified receptors, market studies and workshops with internal experts are conducted to develop a detailed scenario analysis, modelled in a modified BPMN logic. In the second part, the planner needs to develop production system configurations according to the results of the scenario analysis. The appropriate scaling mechanisms are chosen based on the volatile receptors. The application of these mechanisms on station level results in various station concepts satisfying the entire range of expected values within the volatile receptors

    SPPBRD: A decision framework for scalable product platform based robust design.

    Get PDF
    Today\u27s competitive and highly volatile market is redefining the way companies do business. A main competitive advantage for many companies is the ability to bring the products to market faster. An effective method to get the advantage is to develop product platforms. This thesis develops a methodology to assist companies in creating product platforms quickly and efficiently. The thesis focuses on building a model for scalable product platforms and developing a framework for the Scalable Product Platform Based Robust Design since there are many researches on module-based product platform and no systematic framework for scalable product platform. In the methodology, the two-stage approach, multiple-objectives, compromise decision support problem (compromise DSP), and robust design are integrated to build the decision model. The model consists of eight steps that describe how to formulate the problem and how it can be solved. (Abstract shortened by UMI.)Dept. of Industrial and Manufacturing Systems Engineering. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2006 .W36. Source: Masters Abstracts International, Volume: 45-01, page: 0468. Thesis (M.A.Sc.)--University of Windsor (Canada), 2006

    Building competitive advantage through platform-based product family thinking: Case powerpacks

    Get PDF
    Purpose: The purpose of this paper is to discuss through the main aspects and principles of successful platform-based product family development and management. For example car industry and car manufacturers take advantage of platform-based product families while solving the conflict of balancing between wide product variety and operational efficiency. This is a common dilemma also in some other manufacturing companies operating on versatile markets; how to serve individual customer needs with minimum development, manufacturing and service efforts? Product families are in this paper seen as an answer. Thus, the aim of this paper is to promote the adoption of often complex and risky product family development especially in technology and manufacturing focused companies. To be able to minimize risks and maximize the advantages companies need to understand the dynamics of the product family thinking presented in this paper. Design/methodology/approach: After a literature survey the main aspects and principles of the product family thinking are illustrated through a case example from a company designing and manufacturing hydraulic piling equipment. Findings: The case study shows that as universal practices are missing the “best practice” in product family development is always dependent on the nature of the company and its products. It is also evident that gaining long-term competitive advantage through product family thinking will not happen without continuous learning and investments in both time and resources. Originality/value: This paper presents the main aspects and principles of the platform-based product family thinking in a systematic and hierarchical manner by connecting together platforming, architecture design, strategic aspects and management perspectives.Peer Reviewe
    corecore