4,080 research outputs found

    Smart technologies for effective reconfiguration: the FASTER approach

    Get PDF
    Current and future computing systems increasingly require that their functionality stays flexible after the system is operational, in order to cope with changing user requirements and improvements in system features, i.e. changing protocols and data-coding standards, evolving demands for support of different user applications, and newly emerging applications in communication, computing and consumer electronics. Therefore, extending the functionality and the lifetime of products requires the addition of new functionality to track and satisfy the customers needs and market and technology trends. Many contemporary products along with the software part incorporate hardware accelerators for reasons of performance and power efficiency. While adaptivity of software is straightforward, adaptation of the hardware to changing requirements constitutes a challenging problem requiring delicate solutions. The FASTER (Facilitating Analysis and Synthesis Technologies for Effective Reconfiguration) project aims at introducing a complete methodology to allow designers to easily implement a system specification on a platform which includes a general purpose processor combined with multiple accelerators running on an FPGA, taking as input a high-level description and fully exploiting, both at design time and at run time, the capabilities of partial dynamic reconfiguration. The goal is that for selected application domains, the FASTER toolchain will be able to reduce the design and verification time of complex reconfigurable systems providing additional novel verification features that are not available in existing tool flows

    An automatic tool flow for the combined implementation of multi-mode circuits

    Get PDF
    A multi-mode circuit implements the functionality of a limited number of circuits, called modes, of which at any given time only one needs to be realised. Using run-time reconfiguration of an FPGA, all the modes can be implemented on the same reconfigurable region, requiring only an area that can contain the biggest mode. Typically, conventional run-time reconfiguration techniques generate a configuration for every mode separately. To switch between modes the complete reconfigurable region is rewritten, which often leads to very long reconfiguration times. In this paper we present a novel, fully automated tool flow that exploits similarities between the modes and uses Dynamic Circuit Specialization to drastically reduce reconfiguration time. Experimental results show that the number of bits that is rewritten in the configuration memory reduces with a factor from 4.6X to 5.1X without significant performance penalties

    Optimal load shedding for microgrids with unlimited DGs

    Get PDF
    Recent years, increasing trends on electrical supply demand, make us to search for the new alternative in supplying the electrical power. A study in micro grid system with embedded Distribution Generations (DGs) to the system is rapidly increasing. Micro grid system basically is design either operate in islanding mode or interconnect with the main grid system. In any condition, the system must have reliable power supply and operating at low transmission power loss. During the emergency state such as outages of power due to electrical or mechanical faults in the system, it is important for the system to shed any load in order to maintain the system stability and security. In order to reduce the transmission loss, it is very important to calculate best size of the DGs as well as to find the best positions in locating the DG itself.. Analytical Hierarchy Process (AHP) has been applied to find and calculate the load shedding priorities based on decision alternatives which have been made. The main objective of this project is to optimize the load shedding in the micro grid system with unlimited DG’s by applied optimization technique Gravitational Search Algorithm (GSA). The technique is used to optimize the placement and sizing of DGs, as well as to optimal the load shedding. Several load shedding schemes have been proposed and studied in this project such as load shedding with fixed priority index, without priority index and with dynamic priority index. The proposed technique was tested on the IEEE 69 Test Bus Distribution system

    Memory-efficient and fast run-time reconfiguration of regularly structured designs

    Get PDF
    Previous work has shown that run-time reconfiguration of FPGAs benefits greatly from the use of Tunable LUT (TLUT) circuits. These can be rapidly transformed into a specialized LUT circuit and are also very memory efficient when representing regularly structured designs, where the same hardware module is instantiated many times. However, the memory requirements and reconfiguration time of a run-time reconfigurable application are also dependent on the reconfiguration mechanism. In this paper, we will show that the memory requirements of conventional ICAP reconfiguration grow very fast with the number of modules, resulting in excessive memory usage. We propose to use Shift-Register-LUT (SRL) reconfiguration which is faster and results in a memory usage that is independent of the number of modules

    Pixie: A heterogeneous Virtual Coarse-Grained Reconfigurable Array for high performance image processing applications

    Full text link
    Coarse-Grained Reconfigurable Arrays (CGRAs) enable ease of programmability and result in low development costs. They enable the ease of use specifically in reconfigurable computing applications. The smaller cost of compilation and reduced reconfiguration overhead enables them to become attractive platforms for accelerating high-performance computing applications such as image processing. The CGRAs are ASICs and therefore, expensive to produce. However, Field Programmable Gate Arrays (FPGAs) are relatively cheaper for low volume products but they are not so easily programmable. We combine best of both worlds by implementing a Virtual Coarse-Grained Reconfigurable Array (VCGRA) on FPGA. VCGRAs are a trade off between FPGA with large routing overheads and ASICs. In this perspective we present a novel heterogeneous Virtual Coarse-Grained Reconfigurable Array (VCGRA) called "Pixie" which is suitable for implementing high performance image processing applications. The proposed VCGRA contains generic processing elements and virtual channels that are described using the Hardware Description Language VHDL. Both elements have been optimized by using the parameterized configuration tool flow and result in a resource reduction of 24% for each processing elements and 82% for each virtual channels respectively.Comment: Presented at 3rd International Workshop on Overlay Architectures for FPGAs (OLAF 2017) arXiv:1704.0880

    Identifying opportunities for dynamic circuit specialization

    Get PDF
    This work describes the identification of designs that benefit from a Dynamic Circuit Specialization (DCS) implementation on FPGAs. In DCS, the circuit is specialized for slowly changing inputs, called parameters. For certain applications or cores, a DCS implementation is faster and smaller than the original implementation. However, the best DCS implementation can be hard to identify, as it requires the designer to be familiar with both the design and DCS. In this paper, we present a profiling tool to aid the designer in analyzing the feasibility of a DCS implementation. It automatically provides a functional density estimate for the most interesting DCS implementations

    Dynamic reconfiguration technologies based on FPGA in software defined radio system

    Get PDF
    Partial Reconfiguration (PR) is a method for Field Programmable Gate Array (FPGA) designs which allows multiple applications to time-share a portion of an FPGA while the rest of the device continues to operate unaffected. Using this strategy, the physical layer processing architecture in Software Defined Radio (SDR) systems can benefit from reduced complexity and increased design flexibility, as different waveform applications can be grouped into one part of a single FPGA. Waveform switching often means not only changing functionality, but also changing the FPGA clock frequency. However, that is beyond the current functionality of PR processes as the clock components (such as Digital Clock Managers (DCMs)) are excluded from the process of partial reconfiguration. In this paper, we present a novel architecture that combines another reconfigurable technology, Dynamic Reconfigurable Port (DRP), with PR based on a single FPGA in order to dynamically change both functionality and also the clock frequency. The architecture is demonstrated to reduce hardware utilization significantly compared with standard, static FPGA design
    • …
    corecore