
IDENTIFYING OPPORTUNITIES FOR DYNAMIC CIRCUIT SPECIALIZATION

Tom Davidson, Karel Bruneel, Dirk Stroobandt

ELIS CSL, HES group
Ghent University

Sint-Pietersnieuwstraat 41, B-9000 Gent, Belgium
email: [name].[surname]@elis.ugent.be

1. INTRODUCTION

This work describes the identification of designs that benefit
from a Dynamic Circuit Specialization (DCS) implementa-
tion on FPGAs. In DCS, the circuit is specialized for slowly
changing inputs, called parameters. For certain applications
or cores, a DCS implementation is faster and smaller than
the original implementation. DCS implementations can ben-
efit from the possibility in modern FPGAs to reconfigure
specific configuration bits at run-time. This means DCS can
be used to specialize an FPGA circuit during the run-time of
the FPGA.

Initially, in DCS, it is assumed that the parameters are
constant. Constant propagation then allows the specializa-
tion of the circuit by partially evaluating the circuit. This
specialized circuit is smaller and faster than the original cir-
cuit but is only correct for one specific parameter value. Of
course, the parameters will not stay constant for ever, even-
tually they will change. This is solved using the run-time re-
configuration capabilities of the FPGA. A DCS system has
both an FPGA and a configuration manager. The configu-
ration manager is responsible for generating the specialized
circuit and reconfiguring the FPGA.

In an implemented DCS system, the FPGA contains a
specialized circuit for the current parameter value. The FPGA
is working normally until the value of a parameter changes.
Using the new parameter value, a new specialized circuit is
generated by the configuration manager and the FPGA is
reconfigured with this new circuit. During this process the
FPGA is halted. Once the reconfiguration has finished, the
FPGA is working normally again. Until the next parame-
ter change, then the specialization process starts over. The
time and resources needed to generate the new circuit and to
reconfigure the FPGA are overheads DCS introduces. The
time of one specialization is called the single specialization
overhead.

Such a DCS system could be implemented in multiple
ways. In [1] an efficient method for DCS, developed by
Ghent University, is described. It includes an FPGA tool
flow adapted for DCS, which will be used in the following

sections. For the moment, it only implements the reconfig-
uration of LUT truth tables, and not the routing infrastruc-
ture. Only a select number of LUTs are run-time reconfig-
ured, these LUTS are called TLUTs.

Previous papers have shown that this method for DCS
can achieve significant area reductions in a number of hard-
ware designs. In [1], an adaptive 16-TAP FIR-filter is imple-
mented using 56% less area. It uses only 1301 LUTs, while
the size of the original implementation was 2999 LUTs. The
resulting DCS implementation is also 27% faster than the
original implementation. The single specialisation overhead
is 166µs. This is the design used for the profiler run-time
measurements in Section 3. The results for larger FIR-filters
are similar. The same publication also shows a 66% LUT re-
duction for Ternary Content-Addressable Memories. Both
of these results, and the adapted FPGA tool flow, were ver-
ified by building these DCS implementations on an actual
FPGA, the Xilinx Virtex II Pro.

[2] shows that a number of key-based encryption algo-
rithms also see a significant area reduction, 20.6% for AES.
27.8% for Triple DES and a 72.7% reduction for the rc6-
algorithm. Finally, in [3] this method for DCS is shown
to achieve similar results as hand-crafted run-time recon-
figurable implementations of a Network Intrusion Detection
System (NIDS). This paper also presents improvements to
make the NIDS implementation fully run-time reconfigurable,
using this DCS method.

In this paper, we present a profiling tool to aid the de-
signer in analysing the feasibility of a DCS implementation
(Section 3). It automatically provides a functional density
estimate (see Section 2) for the most interesting DCS imple-
mentations.

2. DCS IDENTIFICATION OF A DESIGN

Determining whether or not a certain design will benefit
from a DCS implementation is a difficult task for the de-
signer. First, it requires the designer to be familiar with the
exact DCS-method. Secondly, in order to find a good pa-
rameter selection, insight into the dynamic behaviour of the

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55774887?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


signals in the design is required. This is typically not some-
thing that is important in the normal design process. In ad-
dition, there are no tools that allow the designer to analyse
the dynamic behaviour of large groups of signals. VHDL
and Verilog Simlators do exist, but they focus on verifying
the behaviour of a limited number of signals. Even after the
parameter selection it is very difficult to predict the gains of
a DCS implementation without actually implementing it. To
solve this problem, we first decided on a metric that allows
an easier comparison between implementations. This met-
ric is the functional density, and is explained in detail below.
The next section presents a profiler that uses this metric to
automatically analyse an existing implementation.

To identify designs that benefit from DCS, different im-
plementations of the design have to be compared. A good
measure for this comparison is the functional density (FD) [4].
It is the number of computations per unit of area and per unit
of time (Equation 1). TFPGA is the complete execution time
of the FPGA. N is the number of operations, and AFPGA is
the number of LUTs in the implementation.

FDDCS =
N

AFPGA × TFPGA
(1)

The number of operations, N , can always be expressed
as the number of clock cycles times a correction factor (C).
In the case of the FIR-filter, where one input sample is pro-
cessed every clock cycle, N can be redefined as exactly the
number of clock cycles.

DCS implementations where the benefits are high will
occupy less area and therefore have a higher FD. On the
other hand, if DCS introduces a large time overhead, the
total execution time will increase, while the number of op-
erations stays the same, leading to a lower FD. A design
benefits from DCS if a DCS implementation with a higher
FD that the original implementation can be found.

In the DCS implementation a number of signals will be
selected as parameters. We call this the parameter set. The
most exhaustive way to find the best DCS-implementation is
to calculate the FD for all possible parameter sets. However,
this would take a prohibitively long time, because (i) the
number of signals in complex designs is very high and (ii)
calculating the FD itself requires up to hours for complex
designs.

To address (i), the most interesting parameters for DCS
are identified based on Equation 2. This equation expresses
the FD as a function of the average single specialization
overhead (T̂SST ) and the average time the FPGA is work-
ing for a single parameter value (T̂FPGA).

FDDCS =
1

T̂SST

T̂F P GA
+ 1

N

AFPGA × TFPGA
(2)

The first part of Equation 2 expresses the degradation of
the FD, caused by the single specialization overhead. It is

clear that the degradation will be small if the single special-
ization time is much smaller than the average time for each
parameter value. The influence of the degradation can be
seen clearly in Figure 1. This figure shows how the func-
tional density is dependent on the average time between pa-
rameter changes (T̂FPGA). Looking more closely at the first
part of Equation 2, this means only signals for which T̂SST

is (much) smaller than T̂FPGA will have a low degradation.
In other words, only signals for which the time between tran-
sitions (T̂FPGA) is much longer that the overhead for a sin-
gle reconfiguration (T̂SST ) are interesting parameter candi-
dates. To reduce the number of signals under consideration,
signals for which T̂SST is larger than T̂FPGA are ignored.
A good value for T̂SST is discussed in Section 3.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

100 102 104 106 108 1010 1012

Fu
nc

tio
na

l d
en

sit
y

(O
ps

/s
 / 

LU
T)

Avg. Time between parameter transitions (clock cycles)

Original Implementation
DCS Implementation

Fig. 1. Influence of the degradation on the functional den-
sity of a DCS-implementation. Compared to the functional
density of a generic implementation.

As for (ii, the long time needed to calculate the FD), the
FD has to be determined for each of the remaining param-
eter candidates. Calculating the FD exactly requires run-
ning the full FPGA tool flow, which can take hours for com-
plex designs [5]. Most time is spent in the last two steps,
placement and routing. In addition, both of these steps scale
very badly with increasing circuit size, since both are NP-
complete problems.

However, the FD can also be estimated, before place-
ment and routing. For this estimation, Equation 3, a rewrit-
ten version of Equation 2, is used. Where, T̂O is the average
time between parameter changes in the original implementa-
tion. T 1

DCS and T 1
O are the clock periods of the DCS and the

original implementation, respectively. All these variables
can be estimated based on the FPGA tool flow before place-
ment and routing. A more detailed discussion in Section 3.

FDDCS =
C

T̂SST

T̂O
T1

DCS
T1

O

+ 1

1
AFPGA × T 1

DCS

(3)



3. PROFILER

To help the designer analyse the different DCS implementa-
tions of designs based on the FD metric, an automatic pro-
filing tool was developed. It requires an RTL description of
the design and a test bench with realistic input data. The
profiler uses a two-step approach. In the first step a number
of parameter candidates are selected from all the signals in
the design. In the second step, the functional density is esti-
mated for each of those candidates. Both steps are discussed
in more detail below.

Selecting the parmeter candidates: First, the profiler
runs the test bench through a simulator to gather data on the
dynamic behaviour of all signals. This data is then analysed
in order to remove all signals for which T̂O is smaller than
the chosen T̂SST . This is the criterion explained in the pre-
vious section. However, because the exact overhead of the
DCS-implementation is not known yet, a minimal value for
T̂SST was chosen. This minimal T̂SST is the time needed
to run-time reconfigure one single LUT. This removes all
the signals that have a large FD degradation even with the
smallest possible overhead. All the remaining signals, the
parameter candidates, are given to the next step of the pro-
filer, which will estimate the FD for each candidate.

Functional Density estimate: This FD estimate is based
on Equation 3. Here, T̂O is collected from the analysis of the
dynamic signal behaviour in the previous step. All the other
variables (AFPGA, T̂SST ,T 1

DCS and T 1
O ) are collected by

running an abbreviated FPGA tool flow for DCS [1], without
placement and routing. This flow is run for each parameter
candidate. After this flow has finished, AFPGA is known
exactly and T̂SST , T 1

DCS and T 1
O can be estimated. The

details of these estimates are discussed below.

3.1. Single Specialization Time (T̂SST )

The single specialization time is the run-time overhead in-
troduced by DCS. It has two parts: the time needed for gen-
erating a new circuit (Tgeneration) and the time needed for
the actual reconfiguration of the FPGA (Treconfiguration).

The FPGA tool flow presented in [1] uses Boolean func-
tions to express how the TLUT truth tables are dependent
on the parameter values. The new circuit is generated by
evaluating these Boolean functions for the new parameter
values. This generation time is estimated using the number
of Boolean operations (BoolOps) and the chosen compu-
tation unit (K). K represents the average total overhead of
one Boolean operation. It is determined by running the com-
plete run-time reconfiguration flow for a large design multi-
ple times, while each time measuring only the time required
for the Boolean evaluation.

Tgeneration = BoolOps×K (4)

This computation unit is generally also the configuration
manager. A good option is the embedded CPU in a lot of
modern FPGAs. For the Xilinx Virtex II Pro FPGA, this is
the PowerPC 405. In that case, K is 3.32 clock cycles.

The reconfiguration time is dependent on the chosen re-
configuration method. [1] proposes two methods, one method
using the HWICAP and one using the Shift Register LUT
(SRL) capability of Xilinx FPGA’s.

The HWICAP is the standard configuration interface pro-
vided by Xilinx. In this case, the FPGA is reconfigured
frame by frame. To estimate the reconfiguration time we
estimate number of frames that needs to be reconfigured, as-
suming the TLUTs are spread out randomly over the total
number of LUTs. The reconfiguration time is then Equation
5. For the Virtex II Pro, a single frame is reconfigured in
98.23 µs.

THWICAP
reconfiguration = E[#frames]× Tframe (5)

The second method for run-time reconfiguration uses
the Shift-Register LUT capabilities, present in some modern
FPGAs. This allows the TLUTs to be combined in one or
more shift registers chains. This method of reconfiguration
is much faster because each chain can be reconfigured in
parallel and only the actual truth table bits are sent. A HW-
ICAP frame carries a lot more overhead. The SRL chains
are clocked at the design speed. For the above information,
the reconfiguration time using SRLs can be estimated easily.
It uses the number of TLUTS, the number of chains and the
clock speed of the DCS implementation (Equation 6).

TSRL
reconfiguration =

#TLUTS × 16× T 1
DCS

#chains
(6)

3.2. Clock periods (T 1
DCS ,T 1

O)

The clock periods, T 1
DCS , of the DCS implementation, and

T 1
O, of the original implementation, are estimated by the

number of LUTs in the longest path of the mapping result
of each implementation. This depth is then multiplied with
a worst-case estimate of one complete LUT delay for the
target FPGA. To get the complete clock period estimation a
pre and post delay are added. It is assumed that the longest
path will be from FF to FF, not from I/O Block to I/O Block.
For the Virtex II Pro, the LUT gate delay is 0.275 ns and the
LUT net delay is 0.575. The pre and post delays are 0.886
ns and 0.208 ns respectively.

T 1
estimate = Tpre + depth× TLUTdelay + Tpost (7)



3.3. Profiling time

Using FD estimates instead of exact FD calculations, re-
duces the execution time of the profiler significantly. As
discussed earlier, the most time intensive parts of the FPGA
tool flow are the placement and the routing [5]. Both of
these steps are avoided by using the estimates. The impact
of using the estimates is shown in the execution time mea-
surements described below. These experiments were done
for a Virtex II Pro (xc2vp30-7ff1152), the profiler was run
on a computer with 8 GBs of RAM and an Intel Core2 Quad
Q9650 (3GHz, 1333MHz, 12MB).

Two adaptive FIR filters, a 16 TAP and a 32 TAP ver-
sion, and corresponding test benches were analysed by the
profiler. The profiler was run two times for each FIR fil-
ter, one run used the FD estimates, the other the exact FD
calculation. In each case the execution time for each param-
eter candidate was measured. We will discuss the average
execution time per parameter candidates for all cases.

Table 1. The average execution time for one parameter can-
didate

FD Estimate Exact FD
16 TAP filter 36.12 s 107.12 s
32 TAP filter 41.67 s 248.10 s

The FD estimate for one parameter candidate in a 16
TAP adaptive FIR filter requires 36.12 seconds. Calculating
the FD exactly instead of estimating it requires an extra 71
seconds. In that case, the total analysis time for this filter
would increase from 10.23 minutes to 30.35 minutes. This
extra time is the time needed for the placement and the rout-
ing of the design.

In addition, because the placement is an NP-complete
problem, it scales badly with increasing circuit size [5]. E.g.
for a 32 TAP adaptive FIR filter, the time needed for the
exact calculation of the FD is already 248.10 seconds for
each parameter candidate, while estimating the FD still only
requires 41.67 seconds, a difference of 206.43 seconds. So,
even though the size of the circuit has only doubled, the time
for placement and routing has increased by 2.9x. The 32
TAP adaptive FIR filter still only uses 15% of the Virtex
II Pro area. This effect will be even more pronounced in
designs that use a larger FPGA area.

We are currently preparing an extensive discussion on
the accuracy of the FD estimates. However, it is already
clear that if the FD estimates predict a significant gain, then
the exact, calculated, FDs will also show a significant gain.

4. CONCLUSION

This paper shows how to identify designs that benefit from
DCS implementations, using the functional density (FD) as
a metric. In addition, a profiler that implements this metric is
presented. It automatically analyses the quality of the most
interesting DCS implementations of a given design. This
allows the designer to determine more easily whether a cer-
tain core benefits from a DCS implementation or not. To
reduce the execution time of the profiler an FD estimate is
used instead of an exact calculation.

This profiler is the first step towards a completely au-
tomatic tool flow for DCS. This flow would allow the im-
plementation of DCS systems without any intervention of
the designer. Additionally, self-aware reconfigurable sys-
tems could also use this automatic flow to analyse their own
dynamic behaviour, which could lead to optimal DCS im-
plementations. Off course, this kind of flow would, most
probably, require running the full FPGA tool flow at run-
time. A process which can take up to hours for complex
systems. However, dependent on the practical implementa-
tion of these self aware systems, this kind of elaborate self-
analysis would only be done very infrequently.

Acknowledgements
This research was supported by both the IWT and the Euro-
pean Commission in the context of the FP7 FASTER project
(#287804).

5. REFERENCES

[1] K. Bruneel, “Efficient circuit specialization for dynamic re-
configuration of FPGAs,” Ph.D. dissertation, Ghent Univer-
sity, 2011.

[2] T. Davidson, F. Abouelella, K. Bruneel, and D. Stroobandt,
“Dynamic circuit specialisation for key-based encryption al-
gorithms and DNA alignment,” International Journal of Re-
configurable Computing, 2012.

[3] T. Davidson, M. Merlier, K. Bruneel, and D. Stroobandt, “A
dynamically reconfigurable pattern matcher for regular expres-
sions on fpga,” in ParCo2011.

[4] A. M. Dehon, Reconfigurable architectures for general-
purpose computing. Massachusetts Institute of Technology,
1996.

[5] C. Ababei, “Speeding up FPGA placement via partitioning
and multithreading,” International Journal of Reconfigurable
Computing, 2009.


