5 research outputs found

    Bio-Inspired Robotics

    Get PDF
    Modern robotic technologies have enabled robots to operate in a variety of unstructured and dynamically-changing environments, in addition to traditional structured environments. Robots have, thus, become an important element in our everyday lives. One key approach to develop such intelligent and autonomous robots is to draw inspiration from biological systems. Biological structure, mechanisms, and underlying principles have the potential to provide new ideas to support the improvement of conventional robotic designs and control. Such biological principles usually originate from animal or even plant models, for robots, which can sense, think, walk, swim, crawl, jump or even fly. Thus, it is believed that these bio-inspired methods are becoming increasingly important in the face of complex applications. Bio-inspired robotics is leading to the study of innovative structures and computing with sensory–motor coordination and learning to achieve intelligence, flexibility, stability, and adaptation for emergent robotic applications, such as manipulation, learning, and control. This Special Issue invites original papers of innovative ideas and concepts, new discoveries and improvements, and novel applications and business models relevant to the selected topics of ``Bio-Inspired Robotics''. Bio-Inspired Robotics is a broad topic and an ongoing expanding field. This Special Issue collates 30 papers that address some of the important challenges and opportunities in this broad and expanding field

    A novel hydromechatronics system towards: micro-independent metering.

    Get PDF
    This thesis presents the outcome of an investigation into the development of an existing hydraulic control system known as Independent Metering towards Micro-Independent Metering (MIM). The Independent Metering system uses a different configuration of the connection between the main elements of the hydraulic systems when compared to a traditional hydraulic circuit arrangement. These elements are pump, tank, and actuator. In a conventional control valve, meter-in connects pump flow to one side of the actuator, while meter-out connects the other side of the actuator back to the tank, these metering features are physically linked. With Independent Metering, these metering features are separated such that they can be independently controlled with a potential resultant reduction of energy losses, improved controllability, but with the increased complexity of the control system. In a conventional Independent Metering system, a spool, poppet or cartridge valve is generally utilised. However, in this research, a new stepped rotary flow control valve is used for the development of a novel configuration that also meets the rules of Independent Metering. The use of this valve alongside the electronic driving technique micro-stepping, commonly used in electronically controlled electrical drives, improved the system controllability by introducing a smoothing operation in the hydraulic system. This resulted in the new Micro-Independent Metering algorithm which is one of the main contributions to knowledge in this research. To develop the MIM system, the Model-Based Design technique including the system analysis, modelling and simulation, software-in-the-Loop (SIL) simulation, and the hardware-in-the- Loop (HIL) test, are used. Mathematical model and performance analysis of the valve were conducted in this research. The multi-step response analysis was used to evaluate the dynamical performance of the valve. This indicated that the micro-step driving technique is more suitable for driving the valve as it reduces the effect of the transient response due to friction, while increasing the resolution. Root Locus Analysis (RLA) was used to study valve stability and the performance limitations. The RLA demonstrated the effect of key parameters on the valve operation. For example, the study show that the valve starts losing stability when the applied pressure drop exceeds 35 MPa. A new algorithm was developed to formulate and apply the rules of the MIM system. The algorithm includes an operational modes selection procedure, valve conductance calculation procedure, anti-cavitation procedure, and close value detection (CVD) procedure. The proposed CVD determines the stepper motor position based on a predetermined vector selection

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Design, development, and control of a tough electrohydraulic hexapod robot for subsea operations

    No full text
    <p>In this paper, the design, the development, and the control for an 18 degree-of-freedom electrohydraulic hexapod robot for subsea operations are presented. The hexapod, called HexaTerra, can be equipped with a trenching machine, and move over obstacles and on sloped terrain. Optimization techniques are employed to size the robot legs. Rigid body equations of motion and hydraulic dynamics are developed. Compact electrohydraulic components are sized and selected taking into account the leg kinematics and system dynamic analysis. A model-based control system design is implemented in a real-time environment, able to produce the overall functionality and performance. Experimental results obtained from preliminary tests with the developed electrohydraulic hexapod show good controlled performance and demonstrate excellent system stability over obstacles.</p
    corecore