2,201 research outputs found

    Portability of Prolog programs: theory and case-studies

    Get PDF
    (Non-)portability of Prolog programs is widely considered as an important factor in the lack of acceptance of the language. Since 1995, the core of the language is covered by the ISO standard 13211-1. Since 2007, YAP and SWI-Prolog have established a basic compatibility framework. This article describes and evaluates this framework. The aim of the framework is running the same code on both systems rather than migrating an application. We show that today, the portability within the family of Edinburgh/Quintus derived Prolog implementations is good enough to allow for maintaining portable real-world applications.Comment: Online proceedings of the Joint Workshop on Implementation of Constraint Logic Programming Systems and Logic-based Methods in Programming Environments (CICLOPS-WLPE 2010), Edinburgh, Scotland, U.K., July 15, 201

    On the Implementation of GNU Prolog

    Get PDF
    GNU Prolog is a general-purpose implementation of the Prolog language, which distinguishes itself from most other systems by being, above all else, a native-code compiler which produces standalone executables which don't rely on any byte-code emulator or meta-interpreter. Other aspects which stand out include the explicit organization of the Prolog system as a multipass compiler, where intermediate representations are materialized, in Unix compiler tradition. GNU Prolog also includes an extensible and high-performance finite domain constraint solver, integrated with the Prolog language but implemented using independent lower-level mechanisms. This article discusses the main issues involved in designing and implementing GNU Prolog: requirements, system organization, performance and portability issues as well as its position with respect to other Prolog system implementations and the ISO standardization initiative.Comment: 30 pages, 3 figures, To appear in Theory and Practice of Logic Programming (TPLP); Keywords: Prolog, logic programming system, GNU, ISO, WAM, native code compilation, Finite Domain constraint

    Comparing Tag Scheme Variations Using an Abstract Machine Generator

    Get PDF
    In this paper we study, in the context of a WAM-based abstract machine for Prolog, how variations in the encoding of type information in tagged words and in their associated basic operations impact performance and memory usage. We use a high-level language to specify encodings and the associated operations. An automatic generator constructs both the abstract machine using this encoding and the associated Prolog-to-byte code compiler. Annotations in this language make it possible to impose constraints on the final representation of tagged words, such as the effectively addressable space (fixing, for example, the word size of the target processor /architecture), the layout of the tag and value bits inside the tagged word, and how the basic operations are implemented. We evaluate large number of combinations of the different parameters in two scenarios: a) trying to obtain an optimal general-purpose abstract machine and b) automatically generating a specially-tuned abstract machine for a particular program. We conclude that we are able to automatically generate code featuring all the optimizations present in a hand-written, highly-optimized abstract machine and we canal so obtain emulators with larger addressable space and better performance

    Description and Optimization of Abstract Machines in a Dialect of Prolog

    Full text link
    In order to achieve competitive performance, abstract machines for Prolog and related languages end up being large and intricate, and incorporate sophisticated optimizations, both at the design and at the implementation levels. At the same time, efficiency considerations make it necessary to use low-level languages in their implementation. This makes them laborious to code, optimize, and, especially, maintain and extend. Writing the abstract machine (and ancillary code) in a higher-level language can help tame this inherent complexity. We show how the semantics of most basic components of an efficient virtual machine for Prolog can be described using (a variant of) Prolog. These descriptions are then compiled to C and assembled to build a complete bytecode emulator. Thanks to the high level of the language used and its closeness to Prolog, the abstract machine description can be manipulated using standard Prolog compilation and optimization techniques with relative ease. We also show how, by applying program transformations selectively, we obtain abstract machine implementations whose performance can match and even exceed that of state-of-the-art, highly-tuned, hand-crafted emulators.Comment: 56 pages, 46 figures, 5 tables, To appear in Theory and Practice of Logic Programming (TPLP

    SDN Access Control for the Masses

    Full text link
    The evolution of Software-Defined Networking (SDN) has so far been predominantly geared towards defining and refining the abstractions on the forwarding and control planes. However, despite a maturing south-bound interface and a range of proposed network operating systems, the network management application layer is yet to be specified and standardized. It has currently poorly defined access control mechanisms that could be exposed to network applications. Available mechanisms allow only rudimentary control and lack procedures to partition resource access across multiple dimensions. We address this by extending the SDN north-bound interface to provide control over shared resources to key stakeholders of network infrastructure: network providers, operators and application developers. We introduce a taxonomy of SDN access models, describe a comprehensive design for SDN access control and implement the proposed solution as an extension of the ONOS network controller intent framework
    corecore