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Abstract
In this paper we study, in the context of a WAM-based abstract
machine for Prolog, how variations in the encoding of type infor-
mation in tagged words and in their associated basic operations im-
pact performance and memory usage. We use a high-level language
to specify encodings and the associated operations. An automatic
generator constructs both the abstract machine using this encod-
ing and the associated Prolog-to-bytecode compiler. Annotations
in this language make it possible to impose constraints on the final
representation of tagged words, such as the effectively addressable
space (fixing, for example, the word size of the target processor /
architecture), the layout of the tag and value bits inside the tagged
word, and how the basic operations are implemented. We evaluate
a large number of combinations of the different parameters in two
scenarios: a) trying to obtain an optimal general-purpose abstract
machine and b) automatically generating a specially-tuned abstract
machine for a particular program. We conclude that we are able to
automatically generate code featuring all the optimizations present
in a hand-written, highly-optimized abstract machine and we can
also obtain emulators with larger addressable space and better per-
formance.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Compilers, optimization, code generation, translator writ-
ing systems and compiler generators; D.1.6 [Programming Tech-
niques]: Logic programming; D.3.3 [Language Constructs and
Features]: Dynamic storage management

General Terms Languages, performance

Keywords Warren’s abstract machine, Prolog, low-level represen-
tation optimization, performance, compilation.

1. Introduction
Dynamically typed languages, where the type of an expression may
not be completely known at compile time, have experienced in-
creased popularity in recent years. These languages offer a number
of advantages over statically typed ones: the source code of the
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programs tend to be more compact (e.g., type declarations are not
present and castings are unneeded), faster to develop, and easier to
reuse.

In statically typed languages with prescriptive types the type of
each expression is to be declared in the source code. This makes
it possible to generate tighter data encodings and remove all type
checks at compile time, which in general results in faster execu-
tion times and reduced memory usage and, hopefully, in the static
detection of more programming errors. At the same time, extra re-
dundancy is added in the cases where types can be inferred, and
calls for a more rigorous (or strict) developing methodology. Ad-
ditionally, some program and data structures which are natural for
dynamically typed languages need to be adapted significantly to be
cast into common, well-known type systems.

It is interesting to note that recent advances in program analysis
can potentially reconcile to a large extent this apparent dichotomy
by inferring automatically the properties needed to perform the
optimizations brought about by static typing and by using such
properties to perform non-trivial error and property checking which
subsumes traditional type-based static checking (10; 5; 14; 6). Also,
even in the cases where types and other information cannot be
statically inferred, performance of dynamic languages can be quite
competitive, since modern compilers and abstract machines have
evolved significantly and offer a high degree of optimization.

However, the same high degree of specialization and optimiza-
tion that brings about the performance of modern compilers and
abstract machines implies significant complexity in their design
which in turn makes it very difficult to explore a large design space
of modifications in order to obtain significant further advances, at
least “by hand.”

In this paper we explore, in the context of a state-of-the-art
WAM-based (18; 1) implementation of Prolog, how a number of
variations in the way the core data structures of an abstract machine
are implemented impact performance and memory usage. Our ob-
jective is to draw general conclusions about which are the best op-
timization options. We use a Prolog-inspired high-level language
to specify encodings, the associated operations, and in general to
generate complete abstract machines using these variations. This
language has a type and property system which, while quite flex-
ible, is decidable at compile time, so that very efficient low-level
code (C, in our case) can be generated.

Implementation of Dynamic Typing: Dynamic typing
requires type information to be available at run time, and therefore
it is customary to store it within the actual data during execution.
In this paper we focus on the widespread implementation technique
which uses tagged words. In this approach a (usually reduced) set of
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tags is used to represent type identifiers which are used as the first
level information regarding the type of the contents of the memory
word. Other ancillary information, such as the garbage collection
(GC) bits as needed by some GC algorithms, is often stored in the
tag. These tags are usually attached to the actual data value, and
they are typically stored together in the same machine word. There
are multiple ways to do this using fewer or more bits for the tag,
placing it in the upper or lower part of the word, etc. However, not
all schemes to pair up tag and value offer the same performance,
memory consumption, and addressable space size. The quality of
a tagged word implementation actually depends on a compromise
between the available addressable space and performance. The
latter is dominated by the cost of operations on the tagged type:
setting and getting the tag, reading the value, and manipulating
the GC-related information. Without explicit hardware support for
tagged words (the norm in today’s general-purpose processors),
implementers must rely on simple, natively supported operations
like shifting and masking, and often the effectively addressable
space has to be reduced in order to, e.g., be able to pack a (reduced-
size) pointer in a word using the space left by the tag and the GC
information.

Performance of Encoding Schemes: Some bit layouts
appear, at least a priori, to allow implementing more efficiently
the most often used operations. In practice, experimental results
indicate that with modern processors a realistic cost estimation is
very difficult to perform a priori due to the inherent complexity
of the processor operation, since too many parameters have to be
taken into account: superscalar architectures, out-of-order execu-
tion, branch prediction, size of the pipeline, different cache sizes
and levels, SIMD instructions, etc. That makes it very difficult to
extract performance conclusions from the source code which im-
plements the operations on the tagged data, even if the final as-
sembler code is known and can be analyzed thoroughly: every ba-
sic operation depends, in fact, on the previous history and current
state of the processor units. The situation is aggravated when the
overall abstract machine complexity is taken into account. The im-
plementation of the basic operations is often quite tricky, and high-
performance code is usually achieved by creating by hand a number
of specialized cases of these operations to be used in different con-
texts (i.e., when certain preconditions are met). As a result the code
describing the abstract machine is usually large and any change is
tedious and error-prone, which limits the capacity to explore alter-
natives systematically.

In order to overcome these problems, and building on the work
presented in (13; 12), we have constructed a framework for generat-
ing abstract machines (and their corresponding compiler) automat-
ically based on high-level descriptions of the placement of tags, GC
bits, and values inside a tagged word, the size of the tagged word,
the size of the native machine word, as well as some variations
on the shape of the basic operations which deal with these tagged
words. In all combinations, we aim at optimizing the resulting C
code as much as possible, up to the point in which the result is of-
ten indistinguishable (in some cases identical) from what a highly
skilled programmer would have written.

The concrete virtual machine skeleton we base our variations on
is an implementation of the well-known WAM for Prolog. We ar-
gue that tagging schemes of modern Prolog virtual machines have
requirements which are not unlike those of other dynamic lan-
guages: basic operations, encodings, and optimization possibilities
at this level are similar in all of them. Additionally, many statically-
typed programming languages present also dynamic features such
as class inheritance, dynamic dispatching, disjunction of data struc-
tures, etc., which require similar techniques.

In all these cases, variations on the tagging scheme and ancillary
operations significantly affect both the generated code and the size

of the data structures, and can have a critical impact on execution
speed and memory consumption. In fact, as a result of the (non-
obvious) complexity of the basic tag operations and their very
frequent use, small variations in their implementation can have a
significant effect on performance even in small programs.

Note that the purpose of this paper is not to demonstrate that
we are using the overall best scheme for implementing a Prolog
abstract machine (which includes decisions about term representa-
tions (8), whether or not to use stack variables, last call optimiza-
tions, . . . , as well as parameters that affect performance includ-
ing the bytecode encoding, instruction set, unification algorithm,
C compiler, etc.), but rather to show how a higher level description
(higher than C code) can be parameterized to generate variations
of a tagging scheme, and to study the different results in terms of
performance and memory usage.

2. Specifying Abstract Machines
As mentioned before, classical implementations of abstract ma-
chines involve non-trivial algorithms with data representations de-
fined at the bit level, and very involved (hand-)codifications of the
operations on them. The C language is a common implementation
vehicle because the programmer can control many low level aspects
and the quality of assembler code generated by current compilers
is quite high, so that it is essentially a high-level way of generating
quasi-optimal assembler code. The usual development techniques
involve using preprocessor macros and conditional code, inlining
C functions, using bit packed structures, etc. However, in more in-
volved cases (e.g., when extensive instruction merging is to be per-
formed, or when variations are being explored), this approach falls
short, and some sort of automatic code generation (which can in
part be done with advanced preprocessors) needs to be adopted to
control complexity and avoid coding errors.

In this paper we use an abstract machine generator frame-
work (13) and we use the ImProlog language (12) to write the
abstract machine and to specify the low-level data layout. ImPro-
log is a restricted Prolog subset extended with mutable variables as
first-order citizens and specific annotations to declare constraints
on how to encode the tagged words in the machine memory. The
compilation process ensures that the optimizations which allow
efficient native code to be generated (controlled unfolding, spe-
cialization, unboxing of types, avoiding unnecessary trailing, back-
tracking, etc.) are met by the initial code, and rejects the program /
module otherwise. Although the compiler and the language is not
yet suitable (or intended) for writing general-purpose applications,
it has been successfully applied in the implementation of a very ef-
ficient Prolog emulator that is highly competitive with hand-written
state of the art Prolog emulators such as those of Ciao (4), Yap (16),
SICStus (17), hProlog etc., and which is used as the basis for our
experiments.

The C code that the ImProlog compiler generates could ob-
viously have been hand-written given enough time and patience.
However, as we stated before, our goal is to reduce the burden
on the abstract machine designer (which is likely to reduce pro-
gramming errors) through the use of a higher-level language and
improve correctness (the ImProlog compiler can statically detect
ill-typed operations with respect to the expected tags, without in-
troducing run-time checks), while at the same time making it easier
to maintain and extend the code.

The approach also allows exploring more possibilities of opti-
mization. This includes stating high-level optimization rules and
letting the compiler determine (maybe with additional compilation
hints) whether applying them to generating acceptable native code
is feasible or not at each point. Such optimization rules are used at
any point in which they can be applied while generating the C code
—i.e., in all parts of the abstract machine code corresponding to the
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implementation of bytecode instructions and other operations. This
relieves the programmer from repeatedly having to remember to
apply the same coding tricks at all points where similar operations
are implemented, which also reduces the possibilities of introduc-
ing errors.

2.1 Types in ImProlog

Since ImProlog is the implementation language, the data represen-
tations used in the abstract machines generated are described as
ImProlog types. The language used in ImProlog to describe types
is (as in Ciao and CiaoPP (10)) the same that is used to write pro-
grams. Types are written as predicates, and the set of solutions of
the predicate is the set of values in the type. Type definitions in
ImProlog can have recursive calls, disjunctions, etc., as long as the
compiler is able to analyze them and extract enough information to
generate an efficient, unique encoding for the type.

From a syntactic point of view, Ciao’s functional notation (7)
is convenient to write type definitions, and we will use it for con-
ciseness in this paper. This notation makes the default assumption
that function outputs correspond to the last predicate argument (i.e.,
X = ∼p(T1,. . ., Tn−1) stands for p(T1,. . ., Tn−1, Tn), X = Tn).
The syntax for feature terms uses A·B as a function that returns the
contents of feature B in A. For mutables, the goal A ⇐ B sets B
as the content of A, and the function @A obtains the value stored
in A. The type ∼mut(T) stands for the mutables whose values are
restricted to those of type T.

The ImProlog compilation process distinguishes the type a vari-
able holds at a given time and the type that describes the possible
values that can be encoded in that variable (the encoding type).
Choosing the right encoding for each variable generates a stati-
cally typed (ImProlog) program, in which the type of every ex-
pression must be either inferred by the ImProlog compiler or ex-
plicitly stated so that unique memory encodings for variables and
mutables can be statically determined. The compiler will reject pro-
grams with non-unique feasible type encodings for expressions /
variables.

Although this presents a limitation for general-purpose pro-
gramming, we think that it can be tolerated in the case of writ-
ing an abstract machine, where high performance is paramount. If
a unique data representation cannot be statically determined, the
compiler would need to generate dynamic tests to distinguish be-
tween the different encodings for the same data (e.g., comparing
variables containing atoms which are encoded in different ways)
which may result in a performance loss. Detecting that this is the
case would be difficult if the compiler does not inform the user that
this overhead has been introduced.1

2.2 Feature Terms and Disjunctions of Types

In (12) ImProlog types were limited to built-in types, which are
seen as black boxes, and which reflect machine and low-level types.
As a natural step, we have extended the ImProlog language and
compiler with the required machinery to express the complex types
needed to define tagged words: structured types (based on feature
terms), and disjunctions of types (based on dependent types). For
the sake of efficiency, we have improved the support for low-
level encoding at the level of bits. The implemented support for
dependent types allows indexing the feature term w.r.t. a single
atomic feature. The restriction in that case is that the discriminant
field must have the same encoding properties in all cases. When one
of the type features is accessed and the discriminant value is known
at compile time, no checks are necessary, since the type encoding

1 In fact, these errors can be interpreted as a quality report. An interesting
option would be to define a tolerance value that allows or disallows certain
ways of generating code.

is precisely defined. On the other hand, if the discriminant value is
not unequivocally defined at compile time, the code is wrapped in
tests that cover all the possible cases and which associate them with
a code version specialized for the case in hand.

2.3 Defining a Hierarchy of Types

Inheritance can be captured by the semantics of logical implica-
tion (2), and this idea has been used to define our type hierarchy by
means of feature terms and disjunctions of types. We will use this
hierarchy to define the tagged type (Section 3). Inheritance makes
it possible to define a (complex) set of types as a group of pred-
icates making up a hierarchy tree where each type is a node, the
root type is the root of the tree and the final types, which are not
needed by any other type, its leaves. Using this coding style we can
group together definitions belonging to the same type in an “object-
oriented” fashion. Although it is out of the scope of this paper, this
makes it possible to extend or specialize the type just by adding or
removing final types. The general skeleton of each type definition
includes the following rules:

Rule 1 : supertype(T) :− type(T).
Parent-child relationship between some type and its supertype
(except for the root type). This is to be read as “type is a kind
of supertype”.

Rule 2 : type(T) :− T·kind = ’unique−atom’, typei(T).
This rule defines a final type (a leaf in the tree) in the hierarchy.
This gives the basic solution for the type, which must be mu-
tually exclusive with all other types. Only leaf nodes define the
kind feature.

Rule 3 : typei(T) :− supertypei(T), . . .
The definition of the features that are specific to the type. It may
include the parent’s invariant and extend it with other features.

Rule 4 : operation(A, . . .) :− type(A), . . .
One rule for each operation on the type, using first argument
indexing, when available, for efficiency.

The solutions (i.e., values belonging to the type) given by a type
declaration are those generated by the type itself and by all of its
descendants. The predicates typei and type differ as follows: the
former defines the contents that are exclusive to type type (and,
optionally, the types it inherits from) and the latter defines the type
itself (and, recursively, all the types which inherit from it).

3. Specifying the Tagged Data Type
We define in ImProlog a type that implements the basic data struc-
ture (tagged type) for the Ciao abstract machine. It is a discrim-
inated union of heap variables, stack variables, constrained vari-
ables, structures, list constructors, atoms, and numbers. This type
(or that of mutables constrained to values of this type) appears ev-
erywhere in the abstract machine state (heap cells, temporal reg-
isters, values saved in a choice point, local values in local frames,
etc.).

The novelty of this approach —for the generation of abstract
machines— is that the full definition is composed of the high level
description, used by analysis and optimizations, and the low level
annotations and optional user-defined compilation rules that deter-
mine how optimal native code is generated for the type definition
and operations.

3.1 The Tagged Hierarchy

The tagged type can be viewed as the hierarchy in Figure 1.
A simplified subset of the description for the type is shown in
Figure 2, for generic nodes, and in Figure 3, for the leaf nodes. In
this case the feature that distinguishes all leaves is called tag (the
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tagged

reftagged

hvatagged

cvatagged

svatagged

nonreftagged

constagged
numtagged

atmtagged

structtagged
lsttagged

strtagged

Figure 1. Tagged hierarchy.

The tagged type

taggedi(T) :−
( ext gc bits → true
; T·marked = ∼bool, T·forward = ∼bool ).

unify cons (R, Cons) :− derefvar (R), unify cons d(R, Cons).
. . .

References (a kind of tagged)

tagged(T) :− reftagged(T).
reftagged i(T) :−

taggedi(T),
T·ref = ∼mut(tagged).

unify cons d(R, Cons) :− reftagged(@R),
( trail cond (@R) →

trail push (@R)
; true
),
(@R)·ref ⇐ Cons.

. . .

Non-references (a kind of tagged)

tagged(T) :− nonreftagged(T).
nonreftaggedi(T) :− taggedi(T).
unify cons d(R, Cons) :− nonreftagged(@R),

@R == Cons.
. . .

Constants (a kind of non-reference)

nonreftagged(T) :− constagged(T).
constaggedi(T) :− nonreftaggedi(T).
. . .

Figure 2. Some generic nodes in the hierarchy.

type of the tag feature returns the set of all required tags). We also
describe, as an example, the code for the operation unify cons ,
that unifies the tagged in its first argument with a single-cell tagged
(a tagged whose value is perfectly defined without consulting any
heap or stack location, such as small integers or atoms).

That specification defines the possible tagged words. The de-
fined tagged word may optionally contain two GC bits (3) or place
them in an external memory area, depending on whether predicate
ext gc bits is true or false. Partial evaluation is used to statically
specialize taggedi with respect to the usage of external GC bits.

Note that low-level encoding details are not present at this point;
they are introduced later as annotations. This separation facilitates
automatic handling of more properties that it would be possible
with a low-level implementation (where the domain information
for tagged words is lost when they are translated to integers). For
example, it is possible to specify that all members of the heap have

Heap variables (a kind of reference)

reftagged(T) :− hvatagged(T).
hvatagged(T) :− T·tag = hva, hvataggedi(T).
hvataggedi(T) :− reftaggedi(T).
trail cond (A) :− hvatagged(A), A·ref < (∼s)·heap uncond.
. . .

Small integers (a kind of constant)

constagged(T) :− numtagged(T).
numtagged(T) :− T·tag = num, numtaggedi(T).
numtaggedi(T) :− constaggedi(T), T·num = ∼int.

Figure 3. Some leaf nodes in the tagged hierarchy.

values of type nonstacktagged, to detect errors or remove checks
for svatagged automatically, where the type is defined as:

nonstackreftagged(T) :− hvatagged(T) ; cvatagged(T).
nonstacktagged(T) :− nonstackreftagged(T) ; nonreftagged(T).

4. Optimizing Type Encodings
The data type that customarily constitutes the building unit of
WAM-based abstract machines is a machine word (or tagged)
where the value of some of its bits (the tag) provides the mean-
ing of the rest of them. We obtain the same effect from higher level
type descriptions for the tagged type by constraining the size avail-
able to represent the type and each of its features. In this section
we will describe the annotations and low-level optimizations used
to implement the tagged type. The set of all of these annotations
constitute the parameter values that define a tag scheme variation.

4.1 Bit-level Encoding

The basic data types supported in ImProlog include the unboxed
form of atoms (encoding types that define a set of atoms, where
each atom is represented as a number), numbers (limited to native
types, such as 32 bit or 64 bit integers, floats, etc.), and mutables (as
local C variables or stored as pointers to a memory location where
the value is contained). This is possible because of the restrictions
on the values which can be stored in a variable to avoid boxing:
they must be completely instantiated and contain values defined
by their type. Also, dereference chains of arbitrary length are not
allowed, only fixed-length chains as specified in the type. With
bit-level annotations for features, we limit the total size available
to represent the data type, and the bits available for each of the
features and their relative bit position.

The final bit layout is determined by annotations that control
the bit offset where each feature is placed. In particular, they may
be allocated in the upper or lower free part of the data bits, or
even split between these two locations. For the tagged type, we
abbreviate the storage location of the tag bits as h for upper bits,
l for lower bits, or s for split bits. For GC marks, we use H for
upper bits, L for lower bits, and external when they are allocated in
a separate section of the stack (enabled by ext gc bits/0).

The bit layout affects how feature values can be extracted: if tags
are in the lower part, a mask just gives its value; if they are in the
upper part, a left rotation is needed. However, extracting a tag value
is not so common when optimized tag tests are used, since most op-
erations are reduced to bit tests. The location of tags and GC bits
affects the access to pointers and other values. A field is extracted
by masking out other fields and shifting the value accordingly. If
the fields to be removed are known at compile time, then subtrac-
tion is used instead of masking, so that use can be made of the in-
direct addressing mode in the assembler code (pointer+offset), and
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combined at compile time with other arithmetic operations such as,
e.g., the additions that need to be performed when we use a dis-
placed pointer from a tagged or add two small numbers.

In the case of pointers, the fixed pointer bits must be placed
back, with a previous shift to reintroduce the alignment bits, if they
have been used (note that the shifting to extract the pointer and
reinsert the alignments may be canceled out, such as in s and hL in
32 bits or lH or lL in 64 bits). Note that each bit placement has its
advantages and disadvantages, since optimizing some operations
with one configuration sometimes makes others more costly, which
ultimately complicates performance estimation.

4.2 Trade-off: Limited Address Space

Encoding both fixed-length reference chains and mutables in the
presence of bit-size restrictions implies some implementation tricks
to define pointers where some bits are free to be used for other
purposes. For example, alignment bits can be reused or some extra
bits can be made available by fixing the location of a memory
region with the mmap system call. Note that storing n-bit pointers in
less than n bits results in address space limitation. Such limitation
may not be an issue in 64 bit machines (were the address space
is huge, much larger than the physical memory, as it was also the
case for 32 bit pointers in the not-so-remote past), but currently
it may be a problem in 32 bit machines where more than 1GB of
physical memory is common nowadays. In the case of our tagged
word representation, the available address space is determined by
the number of bits required for tags and GC, the tagged word size
and the use of external or internal GC bits. Here we see even more
clearly why a flexible way to implement abstract machines with
different tagged schemes matters, since a scheme that represents
a good compromise between address space and performance for
a 32 bit machine may not be the best for 64 bits (even more, if
we consider architectural differences). Also, while it is tempting
to decide to simply concentrate on 64-bit machines, since they are
now the norm for new general-purpose machines, it should be noted
that 32 bit machines are still in widespread use and, furthermore,
other computing platforms (such as, e.g., portable gaming devices,
cell phones, etc.) have physical limitations which make them have
32-bit address buses.

4.3 More Control Over Tag Representation

Although an automatic assignment of encoding values for each of
the atoms in a type may be efficient for most applications, it is
not enough to implement optimal operations for the tagged type,
where choosing the right numeric value for each tag may play an
important role in reducing the number of assembler instructions re-
quired to implement essential basic operations on the tagged. The
reason is that for some encodings a single assembler instruction
can check for more than one tag at the same time, yielding faster
code to switch on tag values. To this end, the ImProlog compiler
allows explicit definition of atom encodings and a large set of pre-
defined compilation patterns to build indexing trees. ImProlog does
not have a switch construct, and, as Prolog, it is based on indexing
to optimize clause selection, in two steps defined as Figure 4 illus-
trates.

Index extraction: Group together discontiguous clauses and
transform the program to make explicit the possible indexing keys
(unfolding cheap type checks, removing impossible cases, adding
the default case). E.g., suppose that nonstacktagged(X) holds on
entry, then for the code on the left we obtain the index on the tag
feature of X on the right:

t ∈ {4, 5, 6, 7}?

CN

ye
st ∈ {4, 5, 6, 7}

t ∈ {0}?

CH

ye
st ∈ {0}

CC

no t ∈ {1}

no t ∈ {0, 1}

Pre: t ∈ {0, 1, 4, 5, 6, 7}

(X & 4)!=0

(X & 1 )==0

code

code

Figure 4. Obtaining indexing code.

( hvatagged(X) → CH

; cvatagged(X) → CC

; svatagged(X) → CS

; nonreftagged(X) → CN

)

( X·tag = hva → CH

; X·tag = cva → CC

; ( X·tag = num
; X·tag = atm
; X·tag = lst
; X·tag = str ) → CN

)

Low level indexing: Compile low level indexing, by taking into
account where the tag is located (e.g., lower or upper bits) and how
it is encoded (e.g., hva: 0, cva:1, . . . , str:7). Depending on whether
optimized tests are used or not, we distinguish several compilation
modes, which we will call the swmode parameter: sw0, sw1, and
sw2.

In sw0 mode, the code generator emits a simple if-then-else
(when two cases are used), or a C switch statement (usually com-
piled internally as a indirect jump to an array that maps from tag
values to code labels) — see Figure 5 for an example where the tag
is stored in the lower 3 bits of X.

Note that although C compilers can generate very clever code
for switches, they are unable to infer the value of bit-encoded mem-
bers or make use of user-provided assertions (so they cannot opti-
mize some tests). Although the indirect jump version may look very
optimized, it may hinder the benefits of the branch prediction unit
in modern processors (11). In sw1 the compiler tries to emit bet-
ter code by grouping together tests for several values in a single
expression (that can be cheaply compiled in few assembler instruc-
tions by the C compiler) that we will call bitfield test. We call a
bitfield test with precondition S and postcondition P , for the k-bits
in the p-bit offset, a low level test Test that given a n-bit word X,
where t=(X >> p)&((1<<k)-1), checks that if t ∈ S and Test
is true, then t ∈ P . Examples of tests for the 3 lower bits are:

• Pre:t ∈ {0..7} Post:t ∈ {4, 5, 6, 7} Code: (X & 4)!=0

• Pre:t ∈ {0, 1} Post:t ∈ {0} Code: (X & 1)==0

• Pre:t ∈ {4, 5, 6, 7} Post:t ∈ {4, 6} Code: (X & 1)==0

With the optimized tests, the search space is divided in two (the
values in postcondition, and the values in the precondition minus
the postcondition). When sw2 is selected, more complex indexing
trees are treated, that would otherwise be translated to C switches.
Switch rules represent heuristics to reach the desired branches
more efficiently. The rules are specified as nested disjunctions (that
define a binary tree where the leaf nodes are sets of values) and are
supposed to cover all cases so that the implicit precondition is the
union of all the sets. For example: {4, 5, 6, 7}∨ ({0}∨ {1}) states
that it should do a test to distinguish between {4, 5, 6, 7} (which is
a leaf node) {0, 1}, then do the same for {0} to distinguish between
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switch on X & 7
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jump
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Figure 5. Code generation using sw0.

{0} and {1}. When the test code is inserted, we obtain the low level
definition of the indexing code (Figure 4).

4.4 Extending GC for External and Internal GC bits

GC bits are only active during garbage collection. When GC starts,
a special section is reserved to store GC bits for every WAM stack.
A GC pointer resolution operation which obtains the location of the
GC bits for a pointer from some memory region, while reasonably
fast, accumulates an excessive overhead when it is performed for
every GC bit access.

To minimize the number of GC pointer resolutions without hav-
ing to maintain two slightly different GC algorithm codifications
(for internal and external GC bits), we define an abstract “pointer
to tagged” data type. When internal GC bits are selected, the pointer
is a normal pointer. When external GC bits are used, the pointer to
tagged is actually a pair of pointers: one points to the actual tagged
word and the other one to the byte that contains the GC bits. Pointer
displacement, read, and write operations are done for both pointers,
obtaining a similar performance for the case of external and internal
GC bits.

The GC algorithm (and the code itself) is therefore generic with
respect to the format of the tagged words.

4.5 Interactions with Bytecode

There is an implicit dependence between the abstract machine
definition and the compiler that generates bytecode to be executed
in that machine. By extending the framework to describe the tagged
type, the assumptions about data sizes become a parameter for the
compiler (in addition to other parameters related to the accepted
instruction set, instruction merging, how instructions are encoded,
etc. (12; 13)). When the abstract machine code is generated, all
this information is fed into the compiler; this approach ensures
that the compiler and the abstract machine are synchronized. This
is needed, for example, when the compiler requires the size of a
tagged to insert heap overflow tests prior to the construction of
known terms, or to decide whether multiple-precision arithmetic
is needed when building an integer, which depends on whether the
number of bits used to represent the value of a small number (num
feature in numtagged) is enough to store the value.

The tagged size also affects the size of opcodes and operands in
bytecode instructions. In some architectures n-bit words must be
n-bit aligned (for efficiency or architectural constraints). While
it is possible to introduce paddings to keep operands always
aligned (15), in order to allow a more compact bytecode repre-
sentation, the instruction set in the standard Ciao system uses in-
structions whose size is not a multiple of the largest machine word
(32 bits in a 32-bit machine). In that case, several opcodes stand for
differently padded versions of the same instruction.

In our system the instruction set is generated automatically from
a higher-level description, creating all the necessary padded ver-
sions automatically. E.g., the following code defines an instruction
that unifies an X register (a mutable variable whose low-level ad-
dress is specified by an operand in the bytecode representation con-

boyer Simplified Boyer-Moore theorem prover.
crypt Arithmetic puzzle involving multiplication.
deriv Symbolic derivation of polynomials.
exp Work out 137111.
factorial Compute the factorial of a number.
fft Fast Fourier transform
fib Simply recursive computation of the nth Fi-

bonacci number.
guardians Prison guards playing game.
jugs Jugs problem.
knights Chess knight tour, visiting only once every board

cell.
nreverse Naive reversal of a list using append.
poly Raises symbolically the expression 1+x+y+z to

the nth power.
primes Sieve of Eratosthenes.
qsort Implementation of QuickSort.
queens11 N -Queens with N = 11.
query Natural language query to a database with

information about countries.
tak Computation of the Takeuchi function.
trie Word indexer using tries.
wave arr Signal processing using updatable arrays.
wave dyn Signal processing using dynamic facts.
witt A conceptual clustering algorithm.
wumpus Wumpus world game.

Table 1. Benchmark descriptions.

taining an indirect offset to an address in the global state), and a
constagged:

:− entry(u cons(xreg ,constagged)).
u cons(A, Cons) :− T ⇐ @A, unify cons(T, Cons).

where the code that links the operands of that bytecode with the
arguments is synthesized by the abstract machine generator. In the
instruction above, if the instruction opcodes are stored as a 16 bit
word and the X registers as a 16-bit word, the second operand (that
is 32-bit sized) is aligned to 32 bits or not, depending on whether
the instruction begins at a 32-bit aligned address or not. Then,
two versions of the same instruction (padded and non-padded)
are emitted; in the latter a 16-bit pad before the Cons operand is
inserted to ensure that it is aligned to 32-bits.

5. Evaluating tag scheme variations
We tested 48 combinations of the available address space possibil-
ities, bit layouts, and optimizations. For each combination we gen-
erate an abstract machine on which 22 benchmarks (see table 1) are
executed. Some of these benchmarks are well known and relatively
small, while others (for example, witt and wumpus) can be con-
sidered having a medium size (from 400 to 500 lines). In any case,
these benchmarks exercise operations whose performance will be
greatly affected by the different compilation options under study,
so they can be taken as reasonable witnesses of this impact in ef-
ficiency. We measured the memory usage and the total execution
time, with and without GC. Each benchmark was executed three
times, taking the shortest execution. The experiments were run on
four machines, with different architectures or processors, taking
from 5 to 12 hours, depending on the machine speed. In the ma-
chines where it was possible, the O.S. was running in native 64-bit
mode (executing also the 32-bit tests).

We will use an abbreviated notation for the different combina-
tions of compilation options and architectures, using the following
codes:
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Benchmark Yap hProlog SWI Def. 1.13
boyer 1392 1532 11169 1604 2560
crypt 3208 2108 36159 3460 6308
deriv 3924 3824 12610 3860 6676
exp 1308 1740 2599 1624 1400
factorial 4928 2368 16979 2736 3404
fft 1020 1652 14351 1548 2236
fib 2424 1180 8159 1332 1416
knights 2116 1968 11980 2352 3432
nreverse 1820 908 18950 2216 3900
poly 1328 1104 6850 1160 1896
primes 4060 2004 28050 2520 3936
qsort 1604 1528 8810 1704 2600
queens11 1408 1308 24669 1676 3200
query 632 676 6180 968 1448
tak 3068 1816 27500 2964 5124

Table 2. Speed comparison (coreduo-32).

highbittags h splitbittags s lowbittags l

lowbitgc L highbitgc H

sw0 0 sw1 1 sw2 2

sparc64 64-b. Sparc/Sol. 5.10, 3MB cache
p4-64 64-b. Intel P4/Lin. 2.6, 2MB cache
xeon-32 32-b. Intel Xeon/Lin. 2.6, 512Kb cache
coreduo-32 32-b. Intel Core Duo/Lin. 2.6, 2Mb cache

The C compiler (gcc) we used to compile the emulators had a
different version in each architecture. This may affect the conclu-
sions in which speedups from different architectures are compared,
which we think is sensible only for xeon-32 and coreduo-32
(Section 5.3). In these two cases, however, the “best options” hap-
pen to be the same. This makes us confident that the results will
also be applicable in a more long term, when current compilers
have been outdated.

For each architecture the speedups and memory usage figures
are normalized w.r.t. a default case which corresponds to hL2 with
26 bits of address space (the smallest we tested). This normaliza-
tion makes comparisons among different address spaces meaning-
ful using speedups w.r.t. the fixed basic case. We want to note that
this default case is in itself quite efficient: it was generated using
as basis the Ciao virtual machine (itself an offspring of the SICStus
0.6/0.7 virtual machine) with some improvements (computed go-
to/threaded bytecode, smarter instruction opcode assignment, . . . )
written in ImProlog which made the virtual machine faster than
the stock Ciao one. Table 2 helps to evaluate the speed of the de-
fault emulator (in the coreduo-32 machine) w.r.t. to Ciao 1.13
and other well-know Prolog systems: Yap 5.1.2, hProlog 2.7, SWI-
Prolog 5.6.55.

5.1 Address Limits and Memory Usage

The different addressing possibilities are described in Table 3. The
leftmost column gives a name to each of the combinations and the
one to its right describes the (physical) size of the tagged word (32
or 64 bits), the size of the stored pointer (64 bits when running in
a 64 bit architecture and O.S.), and whether GC bits are internal
or not to the tagged word (extgc). The option qtag, used in the
default tag scheme in Ciao, reserves one bit to represent special
functors for blobs. Note that not all combinations are possible in all
studied architectures. The following columns provide the number
of bits available for pointers, the number of bytes to be aligned to,
and the resulting limits to addressable space.

The growth ratio in memory consumption that a given choice
implies (w.r.t. the default case) appears in Table 4. Within each
case, the figures are the same for every architecture in which the
case can be implemented. However, every memory zone has a
different growth ratio, and the relative growth for every area is

Name Options
Ptr. Align. Limits
bits (bytes) (Mb)

addr26 tagged32*pointer32*qtag 26 4 256
addr27 tagged32*pointer32 27 4 512
addr29 tagged32*pointer32*extgc 29 4 2048
addr30 tagged64*pointer32 30 8 4096
addr32 tagged64*pointer32*extgc 32 8 4096
addr59 tagged64*pointer64 59 8 full
addr61 tagged64*pointer64*extgc 61 8 full

Table 3. Options related to the address space.

not homogeneous for all the combinations. The reason is that the
memory space used by objects does not change uniformly for all
objects.2 Therefore, data about actual memory usage has to be taken
experimentally, as the ratio between these object types is different
for each program.

The differences in program memory come from the need to use
extra padding bytes in some instructions, which have a different
impact in the different tag schemes.

As objects in different tagging schemes take different amounts
of memory (for example, addr30 can address 4GB of memory,
but each tagged word takes twice as much space as in addr29),
Table 3 is not really useful to decide which is the best scheme
memory-wise: it is much more useful to reason about the number
of objects which can actually fit in the memory addressable so that,
leaving aside speed considerations, using addr29 may be more
advantageous, as it uses half as much memory.3 This is shown
in Table 5, where the memory address limits have been adjusted
taking into account the data in Table 4, to finally work out a ratio
of the number of objects which can actually be created. Note that
in practice all the physically available memory is addressable in
64-bit architectures.

Both addr30 and addr32 use two 32-bit (4 bytes) words for
a tagged word in a 32-bit architecture. Pointers must therefore be
aligned to 4-byte boundaries, and their two less significant bits have
to be zero. Hence, both addr32 and addr30 can address 4GB of
memory. The latter is included in order to study how using external
GC bits impacts performance. Although the underlying emulator
differs, those schemes are similar to the one used in ECLiPSe (9).

5.2 General Speed-Up Analysis

We have summarized in a series of plots (Figure 6) the arithmetic4

average of speedups obtained assigning the different combinations
of placements of GC bits, tags, and tag-related primitives in the Y
axis, the option which selects the address space in the shapes of the
dots, and the speedup in the X axis.

Some general conclusions can be drawn from these plots. First,
the Sparc 64 (Figure 6(a)) architecture seems to have a very regular
behavior (probably due to its large number of registers), except
for some specific combinations of options which, non surprisingly,
perform badly in all architectures. The Intel processors, on the other
hand, show wide variations, both for the different options in a given
processor and also among the tested processor families. The latter
can be attributed to the large differences in the internal architecture
among Intel processors, which share little more than a common
assembler language.

Although careful inspection of the plots (including the extensive
per-program data available at
http://clip.dia.fi.upm.es/~jfran/tagschemes) can be of

2 For example, large numbers or floating point numbers have a special,
structure-based representation (a blob) whose size does not grow linearly
with the size of the tagged word.
3 Also, note that stock Linux kernels make only 3Gb available for user
processes in 32-bit architectures.
4 Plots with geometric average were practically identical.
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Addr. Total Program Heap Local Trail Choice GC’ed memory
addr26 1.00 1.00 1.00 1.00 1.00 1.00 1.00
addr27 1.00 1.00 1.00 1.00 1.00 1.00 1.00
addr29 1.09 1.00 1.25 1.25 1.25 1.25 1.10
addr30 1.53 1.22 2.03 1.59 2.15 1.33 1.29
addr32 1.63 1.22 2.28 1.79 2.42 1.50 1.38
addr59 1.92 1.81 2.03 2.00 2.10 2.00 1.29
addr61 2.02 1.81 2.28 2.25 2.36 2.25 1.38

Table 4. Memory growth ratio.

Addr. Total Program Heap Local Trail Choice
addr26 256 (1.00) 256 (1.00) 256 (1.00) 256 (1.00) 256 (1.00) 256 (1.00)
addr27 512 (2.00) 512 (2.00) 512 (2.00) 512 (2.00) 512 (2.00) 512 (2.00)
addr29 1876 (7.33) 2048 (8.00) 1638 (6.40) 1638 (6.40) 1638 (6.40) 1638 (6.40)
addr30 2669 (10.43) 3355 (13.11) 2018 (7.89) 2579 (10.08) 1906 (7.45) 3076 (12.02)
addr32 2513 (9.82) 3355 (13.11) 1794 (7.01) 2293 (8.96) 1694 (6.62) 2734 (10.68)
addr59 all memory all memory all memory all memory all memory all memory
addr61 all memory all memory all memory all memory all memory all memory

Table 5. Effective addressable limits (and ratio w.r.t. default case) for address space options.
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Figure 6. Arithmetic average of speedups for several architectures.

help to draw some definite conclusion, resorting to visual inspec-
tion is too error-prone, so we performed an analytical study of the
available data.

5.3 General-Purpose Abstract Machine

Determining the combination of options which gives the best per-
formance for a general-purpose abstract machine (where general-
purpose is in our case reduced to the universe of programs in Ta-

ble 1) is not easy: there is no absolute winner combination of tag-
ging scheme / access primitive for any architecture / addressing
range, and combinations which perform well (or very well) for
some programs often perform badly (or very badly) for other pro-
grams.

Therefore, we decided to resort to a method based on ballots
to decide the best option encoding / tag primitive implementation
for each addressing space. In this setting, programs are voters,
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(tags,gcbits,swmode) and speedups for host sparc64

Addr.
Winner Loser W/L

best avg. max min. worst avg. max min. avg. max min
addr26 hL2 1.00 1.00 1.00 hL1 0.98 1.00 0.94 1.02 1.06 1.00
addr27 lL2 1.04 1.33 1.00 hH1 0.97 1.00 0.90 1.07 1.47 1.00
addr29 l2 1.04 1.28 0.96 s0 0.95 1.00 0.89 1.09 1.31 1.00
addr30 2 0.69 0.96 0.59 1 0.68 0.96 0.58 1.02 1.05 0.99
addr32 2 0.69 0.96 0.60 1 0.68 0.96 0.58 1.02 1.05 0.99
addr59 lH2 1.00 1.35 0.86 hH0 0.96 1.35 0.83 1.04 1.11 1.00
addr61 l2 1.00 1.35 0.85 h0 0.96 1.35 0.83 1.05 1.11 1.00

(tags,gcbits,swmode) and speedups for host p4-64

addr26 hL1 1.01 1.09 0.94 hL2 1.00 1.00 1.00 1.01 1.09 0.94
addr27 lL2 1.08 1.24 0.86 hL2 0.99 1.07 0.88 1.09 1.24 0.84
addr29 h2 1.08 1.25 0.86 s1 0.98 1.05 0.89 1.09 1.28 0.87
addr30 0 0.80 0.99 0.69 2 0.73 1.00 0.62 1.09 1.19 0.99
addr32 0 0.81 1.00 0.67 2 0.74 0.99 0.62 1.09 1.26 1.01
addr59 hH0 1.07 1.31 0.77 hL1 1.04 1.29 0.77 1.03 1.09 0.96
addr61 l2 1.08 1.31 0.79 l0 1.04 1.24 0.70 1.05 1.32 0.91

(tags,gcbits,swmode) and speedups for host xeon-32

addr26 hL2 1.00 1.00 1.00 hL0 0.97 1.31 0.64 1.07 1.55 0.77
addr27 hL2 0.99 1.36 0.62 hL0 0.72 0.95 0.58 1.40 1.72 1.05
addr29 s2 0.92 1.21 0.65 h1 0.72 0.93 0.60 1.28 1.67 0.97
addr30 0 0.62 0.95 0.39 2 0.61 0.76 0.37 1.02 1.27 0.80
addr32 0 0.66 0.89 0.42 1 0.62 0.80 0.44 1.07 1.48 0.71

(tags,gcbits,swmode) and speedups for host coreduo-32

addr26 hL2 1.00 1.00 1.00 hL0 0.94 1.01 0.70 1.07 1.44 0.99
addr27 hL2 0.99 1.02 0.90 lL0 0.95 1.17 0.70 1.05 1.42 0.85
addr29 s2 0.98 1.07 0.82 s0 0.90 1.00 0.69 1.10 1.18 1.00
addr30 0 0.64 0.98 0.51 1 0.62 0.97 0.51 1.03 1.12 0.97
addr32 0 0.64 0.99 0.55 1 0.62 0.98 0.52 1.03 1.11 0.99

Table 6. Schulze winner for each address space and machine (GC time not taken into account).

(tags,gcbits,swmode) and speedups for host sparc64

Addr.
Winner Loser W/L

best avg. max min. worst avg. max min. avg. max min
addr26 hL2 1.00 1.00 1.00 hL0 0.98 1.02 0.94 1.02 1.07 0.98
addr27 lL2 1.03 1.22 0.98 hH1 0.97 1.00 0.89 1.06 1.37 1.00
addr29 l2 1.00 1.11 0.85 s0 0.93 0.99 0.79 1.09 1.23 1.01
addr30 2 0.69 0.97 0.59 1 0.67 0.97 0.58 1.02 1.05 0.99
addr32 2 0.68 0.96 0.57 1 0.66 0.96 0.56 1.02 1.05 0.99
addr59 lH2 0.99 1.36 0.85 hH0 0.95 1.35 0.82 1.04 1.10 1.00
addr61 l2 0.97 1.34 0.80 h0 0.93 1.33 0.80 1.04 1.11 1.00

(tags,gcbits,swmode) and speedups for host p4-64

addr26 hL1 1.01 1.09 0.94 hL2 1.00 1.00 1.00 1.01 1.09 0.94
addr27 lL2 1.06 1.24 0.86 hH1 0.99 1.11 0.90 1.08 1.25 0.90
addr29 h1 1.04 1.26 0.74 s0 0.95 1.04 0.73 1.09 1.29 0.92
addr30 0 0.78 1.02 0.65 2 0.72 0.99 0.61 1.08 1.19 0.99
addr32 0 0.77 0.99 0.58 2 0.72 0.98 0.53 1.08 1.18 1.01
addr59 hH0 1.04 1.30 0.77 lH0 1.01 1.23 0.80 1.02 1.18 0.90
addr61 l2 1.03 1.30 0.70 l0 0.98 1.24 0.70 1.05 1.32 0.91

(tags,gcbits,swmode) and speedups for host xeon-32

addr26 hL2 1.00 1.00 1.00 hL0 0.97 1.31 0.64 1.06 1.55 0.77
addr27 hL2 0.99 1.36 0.62 hL0 0.71 0.95 0.58 1.40 1.72 1.05
addr29 s2 0.89 1.18 0.61 h1 0.70 0.93 0.60 1.28 1.67 0.98
addr30 0 0.62 0.95 0.40 2 0.61 0.76 0.38 1.02 1.27 0.80
addr32 0 0.65 0.89 0.42 1 0.61 0.80 0.43 1.07 1.48 0.71

(tags,gcbits,swmode) and speedups for host coreduo-32

addr26 hL2 1.00 1.00 1.00 hL0 0.93 0.99 0.70 1.08 1.42 1.01
addr27 hL2 0.99 1.02 0.90 lL0 0.93 1.07 0.70 1.07 1.40 0.94
addr29 s2 0.95 1.01 0.75 s0 0.87 0.98 0.68 1.09 1.18 1.01
addr30 0 0.63 0.97 0.51 1 0.61 0.96 0.51 1.03 1.12 0.97
addr32 0 0.63 0.95 0.52 1 0.61 0.93 0.52 1.03 1.12 0.99

Table 7. Schulze winner for each address space and machine (GC time included).
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and the different combinations are candidates which voters rank
using the runtime they offer for each voter. The idea is to select
the candidate which is, in some sense, most preferred. Among the
many ways to decide between candidates given this information,
Condorcet methods are among the best known and preferred in
many situations. We have selected the Schulze method 5 which
it is used in other related areas and which determines a winner
combination. This winner is removed from the list of candidates
and the algorithm is applied again, to generate a global preference
list, its last member being the the worst combination – the loser.6

The reason not to simply select the combination with the best
average is that extreme cases can affect this average more than what
is desirable. Removing the best and worst combination (to exclude
extreme elements) was an option we did not want to take, because
we wanted to take into account all the available information.

The results of this process are summarized in Tables 6 (without
GC time) and 7 (including GC time), where for each architecture
and address space, the best and worst tag scheme combinations are
shown, together with the average speedup w.r.t. a default combina-
tion. For each of these, the best and worst speedup in the bench-
marks is shown, as well as the ratio (W/L) between these speedups.
This ratio gives a raw idea of what variation can be expected for
each address space and architecture combination.

Let us note first that comparing speedups in different architec-
tures is not really needed (or even meaningful). If a single tagging
scheme / address space option were the winner hands down, then
a single answer (a single code scheme) could be given for a ma-
chine, but a per-architecture best option can typically be decided at
compile time with adequate macro definitions. On the other hand,
comparing the best schemes in each of the architectures may give
some insight on which code schemes are favored by the C compiler,
optimizer, and processor, which may guide future decisions.

Selecting between tag and GC bit placement and code for tag
management operations is somewhat independent from the ad-
dressing scheme selected. On one hand, schemes which need na-
tive 64 bits (e.g, addr59 and addr61) are only applicable to 64-bit
machines, and therefore cannot be compared with those designed
to be used in 32-bit machines. Additionally, if some tag scheme A
gives better performance, but less effective address space than some
other tag scheme B, then a decision should be made depending on
the expected needs of speed vs. runtime memory needs.

In order to decide which schemes are the best, we first observe
that the options favored by the Schulze method are the same regard-
less of whether GC time is taken into account or not in all cases but
one: for the p4-64 architecture and the addr29 tag scheme in ta-
bles 6 and 7, the winners are, respectively, h2 and h1. However,
these two code generation options gave almost identical speedup
results, so the difference can be safely ignored, and we can, there-
fore, focus on just one of the speedup tables.

Options for Native 64-bit Implementations: In the two 64-bit
architectures the native 64-bit tagging scheme is reasonably fast
w.r.t. the default 32-bit one, and both (addr59 and addr61) give
a similar speedup. Therefore, and looking at the actual memory
consumption figures in Table 4, we select addr59, since it would
make better use of the really available memory in the machine. In
that case, GC bits in the higher part (H) is the recommended option,
while tag bits are better placed in the lower (l) part for sparc64
and in the higher (h) part for p4-64. In general, predefined switch
rules (2) gave the best results, except in the scheme addr95 in
p4-64.

5 http://m-schulze.webhop.net/schulze1.pdf
6 The Schulze method may end up in a draw, in which case we select the
combination with the best average speedup to be the winner.

Options for 32-bit Architectures: Architectures with only 32-
bit addresses (xeon-32 and coreduo-32, in our case), can take
advantage of the full address range by using two 32-bit words (i.e.,
schemes addr30 and addr32). This, however, comes at the cost of
a noticeable slowdown. In return, a larger set of objects can be kept
in memory. Between these two schemes, and if memory usage is a
concern, we would select addr30. If speed is a primary concern,
then the default setup (addr26) gives the best results. However,
for a not very large price in speed (especially in coreduo-32
machines), the number of objects in memory can be increased
almost eightfold. For memory-demanding applications (which may
even not run in the memory available with addr26) this would
obviously be an advantage and the results suggest using addr29 in
these cases. For the selected case, the best performance is obtained
by using external GC bits and split tag bits (s).

Options for 32-bit Tagged Words in 64-bit Machines: Although
the natural option for a 64-bit machine would be a 64-bit native
implementation, there are cases where this may not be completely
advantageous. The space that a 64-bit tagged word takes up is 8
bytes, and if a 64-bit machine has less than 4Gb of memory, as
is often the case currently on, e.g., normal desktops and laptops,
more 32-bit-based objects can fit in it without leaving any memory
unreachable. In this case, again, the best options in terms of ad-
dressing space, addr30 and addr32 pay a high price in speed. A
better compromise uses addr29, as it provides good speed and a
reasonably large memory address space. For the selected case, best
options are similar to those for 64-bit in the same machines: tag
bits are better placed in the lower (l) part for sparc64 and in the
higher (h) part for p4-64.

Impact of External GC Bits on Performance: Turning on exter-
nal GC bit support (moving the GC bits out of the word) increases
addressable space, at the expense of a somewhat more complex
access to the GC bits and, perhaps more importantly, less cache
locality, which however affects execution only when GC is per-
formed. This is the reason why speed-ups are more modest when
GC is turned on in the combinations where GC bits are external
to the tagged word (addr29, addr32, addr61). Its impact is how-
ever not dramatically large, and can be accepted in exchange for
the increased address space if it is really needed.

5.4 Per-Program Abstract Machines

Our framework makes it possible to generate an executable which
contains bytecode, native code, and an abstract machine specialized
for a given Prolog program, using any of the generation options
we have discussed so far. It is, thus, natural, to generate program-
specific abstract machines and measure their performance. Table 8
shows the results of this experiment. Each case was obtained by
finding the best combination of tag/GC placement options for each
benchmark, then averaging over the benchmarks.

A comparison of the speedups in Table 6 and 7 with Table 8
shows that program-specific abstract machines have, on average,
better performance than an “agreed” single abstract machine. The
difference is not very big and, for general usage, a single abstract
machine with the right selection of options (see Section 5.3) is
probably enough. However, for some benchmarks the best abstract
machine is more than twice as fast as the worst one (e.g., addr27
in xeon-32, column “W/L Sabs”), and in some other benchmarks
they difference reaches the 38% (again, xeon-32 but in the addr26
row in the “Sabs” column).

6. Final remarks
It is interesting to observe that the 32 and 64 bit cases have a
close performance, but of course there is a huge difference in
address space (and a noticeable increase in memory consumption).
Double word representations, which are easier to implement, have
been observed to be in general slower. Thus, for languages or

41



speedups for host sparc64

Addr.
Without GC With GC

Sabs W/L Sabs Sabs W/L Sabs
avg. max min avg. max min avg. max min avg. max min

addr26 1.00 1.03 1.00 1.03 1.07 1.00 1.00 1.02 1.00 1.03 1.07 1.00
addr27 1.04 1.33 1.00 1.08 1.47 1.00 1.03 1.22 1.00 1.07 1.37 1.01
addr29 1.04 1.29 0.99 1.10 1.40 1.00 1.01 1.11 0.85 1.09 1.29 1.01
addr30 0.69 0.96 0.59 1.02 1.05 1.00 0.69 0.97 0.59 1.02 1.05 1.01
addr32 0.69 0.96 0.60 1.02 1.06 1.00 0.68 0.96 0.57 1.02 1.06 1.00
addr59 1.02 1.35 0.86 1.07 1.43 1.00 1.00 1.36 0.85 1.06 1.35 1.00
addr61 1.01 1.35 0.86 1.05 1.11 1.00 0.97 1.34 0.82 1.05 1.11 1.00

speedups for host p4-64

addr26 1.03 1.13 1.00 1.05 1.13 1.01 1.02 1.13 1.00 1.05 1.13 1.01
addr27 1.12 1.29 1.01 1.18 1.41 1.03 1.11 1.29 1.01 1.17 1.41 1.03
addr29 1.12 1.29 1.01 1.17 1.32 1.02 1.08 1.29 0.78 1.16 1.32 1.02
addr30 0.80 1.01 0.69 1.10 1.19 1.01 0.78 1.02 0.65 1.09 1.19 1.01
addr32 0.81 1.00 0.67 1.10 1.26 1.01 0.78 0.99 0.58 1.09 1.18 1.01
addr59 1.14 1.33 0.83 1.15 1.40 1.04 1.09 1.32 0.81 1.14 1.38 1.04
addr61 1.11 1.31 0.81 1.12 1.33 1.02 1.06 1.30 0.71 1.11 1.33 1.02

speedups for host xeon-32

addr26 1.08 1.38 1.00 1.24 1.56 1.00 1.08 1.38 1.00 1.23 1.56 1.00
addr27 1.03 1.36 0.77 1.54 2.13 1.27 1.02 1.36 0.77 1.53 2.13 1.25
addr29 1.03 1.23 0.75 1.48 1.74 1.12 1.00 1.23 0.73 1.47 1.74 1.11
addr30 0.69 0.99 0.39 1.20 1.58 1.03 0.69 0.99 0.40 1.19 1.58 1.03
addr32 0.73 0.89 0.45 1.27 1.51 1.04 0.71 0.89 0.45 1.27 1.51 1.04

speedups for host coreduo-32

addr26 1.00 1.04 1.00 1.08 1.44 1.01 1.00 1.03 1.00 1.08 1.42 1.01
addr27 1.02 1.24 0.98 1.13 1.43 1.05 1.01 1.16 0.94 1.13 1.40 1.05
addr29 1.01 1.19 0.97 1.14 1.43 1.02 0.98 1.04 0.75 1.13 1.40 1.05
addr30 0.64 0.98 0.55 1.04 1.12 1.01 0.63 0.97 0.55 1.04 1.12 1.01
addr32 0.64 0.99 0.55 1.04 1.13 1.00 0.63 0.95 0.53 1.04 1.13 1.00

Table 8. Speedup results using the best options for each benchmark.

applications with a reduced set (around 8) of types of small objects
requiring runtime type information it is clearly worth using in-word
tags.

It is also interesting to note that with our approach we have been
able to automatically generate code featuring all the optimizations
present in a hand-written, highly-optimized abstract machine (the
base case that we compare to) and we have also been able to obtain
emulators with larger addressable space and/or better performance.

The results indicate that it is difficult to recommend a partic-
ular bit layout or tag switch implementation that will be ideal for
all situations, since the best option set changes depending on the
architecture and the memory requirements of the application. In
this sense the results presented provide a recommendation table
which indicates the best option for each situation (the results are
of course limited to the architectures studied). In this sense, further
interesting results of this work are a) that it is possible to construct
a framework that allows a flexible and parametric implementation
of tagged data which can be adapted to support different schemes
with modest effort, and b) that the variability in results observed
indicates that constructing such as framework is indeed useful not
just for experimentation, but also for production since it allows gen-
erating the right machine for each architecture or even for each ap-
plication.

The system in which these techniques have been implemented
and wich which the experiments have been performed is part of
the development branch of Ciao Prolog, which can be obtained by
contacting the paper authors.
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