5 research outputs found

    Analytical Model of Modular Spoke-Type Permanent Magnet Machines for In-Wheel Traction Applications

    Get PDF
    This paper proposes an analytical model of modular spoke-type permanent magnet (MSTPM) machines based on air-gap field modulation (AFM) theory. Firstly, a fundamental AFM model of open-circuit MSTPM machines is introduced. The open-circuit air-gap field of MSTPM machines is determined by three fundamental elements including the primitive magnetizing magnetomotive force (MMF) produced by permanent magnet (PM), and two modulators which consist of stator and rotor permeance. The analytical MMF excited by PM (PM-MMF) can be calculated by using magnetic circuit method, while the stator and rotor permeance models are developed based on relative permeance (RP) method. Thereafter, a general model is proposed to calculate the open-circuit back electromotive force (EMF) of MSTPM machines. Further, the winding inductance model is established on the basis of equivalent magnetic circuit method and RP model. Finally, the machine performance is predicted by the analytical model, and verified by both finite element analysis (FEA) and experimental results

    Advanced Electrical Machines and Machine-Based Systems for Electric and Hybrid Vehicles

    Get PDF
    The paper presents a number of advanced solutions on electric machines and machine-based systems for the powertrain of electric vehicles (EVs). Two types of systems are considered, namely the drive systems designated to the EV propulsion and the power split devices utilized in the popular series-parallel hybrid electric vehicle architecture. After reviewing the main requirements for the electric drive systems, the paper illustrates advanced electric machine topologies, including a stator permanent magnet (stator-PM) motor, a hybrid-excitation motor, a flux memory motor and a redundant motor structure. Then, it illustrates advanced electric drive systems, such as the magnetic-geared in-wheel drive and the integrated starter generator (ISG). Finally, three machine-based implementations of the power split devices are expounded, built up around the dual-rotor PM machine, the dual-stator PM brushless machine and the magnetic-geared dual-rotor machine. As a conclusion, the development trends in the field of electric machines and machine-based systems for EVs are summarized

    Comparative study on two modular spoke-type PM machines for in-wheel traction applications

    Get PDF
    This paper focuses on the comparative analysis of modular spoke-type permanent magnet machines with two magnetization modes, which are referred to as M-I and M-II types. The analytical models of the proposed machines are built based on the simple magneto-motive-force-permeance method. With the help of finite element analysis and the analytical models, magnetic fields in machines with different magnetization modes are compared. Then, taking as a base an existing commercial in-wheel machine used in an electric motorcycle, two proposed machines with different magnetization modes are designed as in-wheel traction machines and compared with respect to electromagnetic torque, flux-weakening performance, over-load capability, etc. The machines are prototyped and experimentally tested to verify the prediction that the M-II machines exhibit a higher torque output while the M-I machines have a wider speed range

    Design and Analysis of Magnetic-Geared Transmission Devices for Low-Speed High-Torque Application

    Get PDF

    Investigation of Magnetically Geared Stator Permanent Magnet Machines

    Get PDF
    Stator-permanent magnet (PM) (Stator-PM) machines include doubly salient PM, flux reversal PM (FRPM), and switched flux PM (SFPM) machines, in which both the PMs and armature windings are placed in the stator, whilst there is neither PM nor coil in the rotor. They have been the subject of much interest over the last 20 years. The operation and interaction mechanisms between the open-circuit and armature excitation magnetomotive forces (MMFs) in stator-PM machines have not been well described, however, which will be explained by the magnetic gearing effect in the first part of this thesis. It is found that similar to magnetic gears and magnetically geared (MG) machines, conventional single-stator-PM machines operate based on the modulation effect of the rotor to the open-circuit and armature excitation MMFs. It is also found that more than 95% of the average electromagnetic torque in SFPM machines is contributed by several dominant open-circuit and armature excitation air-gap field harmonics. The magnetic gearing effect in the partitioned stator SFPM (PS-SFPM) machines, which was proposed recently based on the magnetic gearing effect in the conventional single stator SFPM machines, is also investigated in this thesis. The partitioned-stator-PM machines also operate based on the magnetic gearing effect. Furthermore, over 93% of the electromagnetic torque generated in both the outer and inner air-gaps in the PS-SFPM machines is contributed by the dominant air-gap field harmonics. Consequent-pole PM topology and overlapping armature winding topology for the partitioned stator FRPM (PS-FRPM) machines, based on the magnetic gearing effect in the partitioned-stator-PM machines, are investigated in this thesis. By applying consequent-pole PM topology, about a third of the PM volume can be saved, but the torque density and efficiency are similar. For the overlapping armature winding topology, higher torque density, smaller loss, and hence larger efficiency etc. can be achieved when the machine stack length is relatively long. Finally, the PS-FRPM machines and the conventional MG machines, both of which have surface-mounted PMs, are compared in terms of electromagnetic performance. Compared with conventional MG machines, PS-FRPM machines have a smaller flux-leakage and hence a higher torque density and a larger power factor due to their smaller PM pole-pair number and iron piece number
    corecore